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Abstract: A new framework in the form of Polarimetric Synthetic Aperture Radar 
(PolSAR) image classification, where deep Convolutional Neural Networks (CNNs) were 
integrated with the traditional Machine Learning (ML) techniques under a Temporal 
Convolutional Network (TCN) architecture, was introduced in the paper. The main aim 
behind this new approach is to overcome the severe limitations inherent in both deep 
CNN and conventional ML approaches. The application of the sliding-window strategy 
eliminates the necessity of requiring extensive feature extraction procedures while 
reducing computational complexity simultaneously. Experiments on four benchmark 
PolSAR datasets for C-Band, L-Band, AIRSAR, and RADARSAT-2 data attest to the 
framework's remarkable classification accuracies in the range of 94.55% to 99.39%. This 
integrated framework is thus a significant advancement in PolSAR image analysis in 
offering an efficient methodology that combines the strengths of deep CNNs and 
traditional ML, by mitigating their respective limitations. It also combines the sliding-
window technique with the architecture of TCN and then yields excellent classification 
accuracy with no much additional computational overhead. The results obtained thus 
indicate a good chance of revolutionizing the state of the art in PolSAR image 
classification, providing crucial efficiency improvements and making applications in 
environmental applications stronger, across almost all kinds of fields. 

Keywords: Deep Learning, Temporary Convolution Neural Network, Polarimetric 
Synthetic Aperture Radar, Support Vector Machine, Satellite Image. 

1. Introduction 

Recently, Polarimetric Synthetic Aperture Radar, or PolSAR, has emerged as one of 
the most valuable tools for remote sensing because it can acquire detailed surface 
features for wide ranges of environmental conditions (Karachristos et al., 2024). Since 
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multiple polarizations provide the data, PolSAR yields very complex data that would 
be useful for a variety of applications such as environmental monitoring, land use 
classification, and disaster management (Shokr & Dabboor, 2023). However, output 
data being this complex requires sophisticated techniques for effective analysis and 
classification. More recently, advancement in machine learning, especially deep 
learning, has promised improvements to PolSAR image classification (Han et al., 
2023). However, such methods have been proven to oftentimes come hand in hand 
with extra bottlenecks such as high computational demands and the insistence on vast 
training data. Hybrid models that combine the strength of different approaches for 
better classification accuracy, besides reducing the overall computational burden, are 
gaining interest lately (Qiao et al., 2024). 

Synthetic aperture radar (SAR) is a key component of modern remote sensing. It 
offers unparalleled information for surface features, depending on the prevailing 
weather conditions. Po1SAR techniques meant to enhance SAR capabilities and 
feature multiple orthogonal polarizations used also induces extracting data of intricate 
and fine resolution. Discerning and classifying Po1SAR are profoundly significant in 
both socioeconomic and ecological domains. A postulation of a series of methodologies 
was granted, (Hua, Wang, et al., 2024; Meng et al., 2024) relying often on features 
collected in a difficult way, which eventually restrains their efficiency. For such 
intrinsic limitations within conventional paradigms to be overcome, CNNs emerged 
during the recent epoch in the domain of visual recognition tasks. Potent due to an 
unrelenting appetite for unlocking the full potential of various datasets, CNNs reflect 
a robust architecture. This preference extends to the SAR data classification domain, 
supported by deep learning ( Zou et al., 2010), with a requirement for a considerable 
training data fraction, arousing pragmatic constraints.  

This paper responds to the aforementioned exigencies by proposing a novel 
adaptive and compact CNN approach for accurate classification of PolSAR data. It 
operates directly on second-order Po1SAR data descriptors and thereby avoids 
necessary discrete feature preprocessing and extraction that is typically required in 
other approaches. This methodology extended from previous application to single- 
and dual-polarized SAR image classification, thus leveraging the adaptive and compact 
CNN framework onto the domain of PolSAR. The consequence is augmented capacity 
to harness an expanded repertoire of features stemming from diverse Target 
Decomposition theorems, courtesy of an augmented number of polarizations. The 
evaluation demonstrates that the adaptive and compact CNNs proposed are efficiently 
efficient, with the classification performance of PolSAR increased while consuming a 
different training data fraction-Less than 0.1% of the whole SAR corpus - and also 
demonstrating computational complexity that suits the real-time processing 
requirement. In addition to that, the designed CNN facile configuration encourages the 
adoption of low-resolution patches (such as From 7 × 7 to 19 × 19 pixel sliding 
windows, for example), which thereby reduces former challenges (Li et al., 2019). 

The following sequence is a description of the organization of the paper. In section 
2, the work is expounded, and in section 3, the whole methodology proposed is given 
in terms of data acquisition, feature extraction, and classification. In section 4, 
experimental results are discussed, whereas the discussion is presented in section 5. 
Finally, a summary of the whole work and the conclusion are given in section 6. 
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2. Related Work 

Classification of PolSAR images is now an area that has attracted immense 
attention because such images hold much importance for environmental monitoring, 
land cover mapping, and disaster management. The availability of high-resolution 
PolSAR images also creates an imperative for the development of accurate and 
efficient classification techniques. Considering the inherent difficulties in PolSAR 
image classification, such as data complexity and demands on real-time processing, a 
number of approaches have been developed over the years to address them. 
Traditional methods usually remain based on manual feature extraction, with 
inherent issues associated with time-consuming and less accurate results. Promising 
solutions, therefore, arise in modern machine learning, especially deep learning, 
which automatically extract features to improve classification accuracy. 

New methodologies for PolSAR image classification are both old and modern, 
comprising known traditional tools as well as emerging ones designed for this fast-
growing area (Ferreira et al., 2024). In the initial stages, the approaches relied mainly 
on manual feature extraction and conventional machine learning algorithms; 
therefore, they were not very accurate and were very inefficient from the perspective 
of being computationally expensive. It is however with the increase of the complexity 
of PolSAR data as time passes by that the need for more advanced and automated 
techniques is established. Studies, such as (Imani, 2024; C. Yang et al., 2024; Zhang et 
al., 2024) show the utilization of diverse traditional techniques in SAR data 
categorization.  

Stemming from various Target Decomposition (TD) approaches, a gamut of 
Po1SAR features is leveraged by these methods. Randon Forest (RF) and Support 
Vector Machines (SVMs) are among the most promising conventional classifiers, 
relying customarily on two SAR feature categories. Features belonging to the first 
category are those that can be directly extracted from SAR data, which include second-
order descriptions and scattering matrices. The second category consists of methods 
based on features driven from target decomposition theorems. A paradigmatic shift is 
made noticeable within the Po1SAR classification subdomain to leverage techniques 
that are associated with the Deep Learning approach, and more specifically, deep 
CNNs have been widely adopted. Research shifts deeply into the integration of deep 
learning models into traditional methods for higher classification accuracy and 
greater computational efficiency. In fact, the evolution of methodology is consequent 
upon the process of challenging innovation with practicality: Classification of PolSAR 
images evolves keeping pace with improvements in technology and its applications, 
whose objectives and demands continue to change (Imani, 2024).  

For Po1SAR image classification, an innovative approach that integrates online 
active learning with extreme learning machine (ELM) techniques was proposed by (Li 
et al., 2019). The methodology was designed towards improving accuracy and 
efficiency in the solution through the dynamics learnt from the sequential data by 
incorporating a discrepancy sampling strategy for informative samples. This 
algorithm is computationally much faster and reaches an accuracy of up to 93.47%, 
showcasing the algorithm's superiority over traditional methods. An innovative 
classification method was presented by Cao et al. (2021) for PolSAR images. In this 
approach, the CK-ENC is a composite kernel-based elastic net classifier that combines 
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the method of super pixel segmentation with composite kernel approach adapted for 
enhancing classification performance in cases of very small training samples. As 
evidenced by the results of experiments, improvements are seen substantially in 
terms of classification accuracy compared over a wide range of datasets. It therefore 
exemplifies the strength of the approach above other sophisticated techniques. From 
the results obtained, it can be seen that there indeed is a notable improvement that 
can reach as high as 97.5% in some datasets in terms of overall accuracy (OA) 

(Pollachom et al., 2022).  

The development of efficient neural network architectures in SAR data processing 
is the core theme of recent developments in modern classification techniques. Recent 
approaches would tend to lower complexity while achieving higher accuracy, thus 
addressing some of the challenges brought about by the complexity nature of the SAR 
data (Hua, Hou, et al., 2024).  Ahishali et al. (2021) applied a method that focuses on 
compact and efficient neural network designs for handling SAR data, emphasizing the 
reduction of computational complexity while maintaining high classification accuracy. 
The methodology involves adapting CNN architectures for SAR image processing, 
including techniques for handling SAR data exceptional features, like speckle noise as 
well as varying polarizations (Yadav et al., 2022).  

The focus on creating a comprehensive Po1SAR image analysis dataset was clear in 
(Wang et al., 2022). The new dataset was aimed to overcome the shortcoming of 
current datasets such as higher complexity and larger scale for complex terrain, which 
will promote the development of advanced algorithms for terrain segmentation. For 
these purposes, their work proposes the collection and annotation of Po1SAR images, 
utilizing satellite GaoFen-3 as the imaging data provider and a large-scale manual 
annotation procedure to guarantee correct labels on the terrain category. With 2000 
high-resolution image patches categorized into six terrain types, the AIR-PolSAR-Seg 
dataset is very valuable for PolSAR terrain segmentation research. Multicategory 
terrain segmentation experiments demonstrate that deep learning methods 
considerably outperform traditional approaches; the mean Intersection over Union 
(mIoU) is between 44.23% and 52.58%, and OA is between 75.53% and 77.46%. Deep 
learning methods perform even more superiorly such as OA ranges from 98.48% to 
98.83% and mIoU scores from 85.80% to 89.29%. In building segmentation, deep 
learning methods attained OA scores ranging from 82.43% to 83.84% and mIoU scores 
ranging from 85.80% to 89.29%, thus indicating that these methods are remarkably 
superior to deal with category imbalances as well as complicated scenes in the AIR-
PolSAR-Seg dataset.   

A novel approach was proposed in Chen et al. (2023) for enhancing neural network 
classification of PolSAR image. This Wishart Locally Constrained Expansion (WLCE) 
method increases the efficiency of the training dataset through Wishart distribution 
and makes use of spatial correlations to expand samples. Semi-supervised PolSAR 
image classification overcomes the challenge of the lack of sufficient labelled data so 
that overall accuracy can be significantly improved across benchmark datasets. The 
accuracy reaches up to 97.43%, as demonstrated through extensive experiments and 
comparisons with the existing techniques (Li, 2022).  
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Table 1: Presented Studies for PolSAR Images Classification 
Authors 
and Year 

Dataset Methodology Classification 
Method 

Result 
(Performance) 

(Li et al., 
2020) 

AIRSAR L-Band 
(San Francisco Bay, 

Flevoland), 
RADARSAT-2 C-

Band (San 
Francisco Bay, 

Flevoland) 

Online Active 
Extreme Learning 

Machine with 
Discrepancy 

Sampling 

Extreme 
Learning 
Machine 

(ELM) 

Improved 
Efficiency and 

Accuracy 
A = 93.47% 

(Cao et 
al., 2021) 

Various PolSAR 
Datasets 

Super Pixel-Based 
Composite Kernel 

and Elastic Net 

Composite 
Kernel-Based 

Elastic Net 
Classifier 

Demonstrates 
Significant 
Accuracy 

Improvement 
A = 97.5% 

     
(Ahishali 

et al., 
2021) 

AIRSAR L-Band 
(San Francisco Bay, 

Flevoland), 
RADARSAT-2 C-

Band (San 
Francisco Bay, 

Flevoland) 

Compact and 
Adaptive CNN 

Convolutional 
Neural 

Network 

A = 85.33% on 
AIRSAR L-Band 

And 
A = 81.33% on 
RADARSAT-2 C-

Band 

(Ahishali, 
& 

Kiranyaz 
et al., 
2021) 

Various SAR 
Datasets 

Adaptive CNNs for 
SAR Image 

Classification 

Convolutional 
Neural 

Network 

Overall 
Accuracy 
Ranging 

92.33% to 
99.39% 

(Wang et 
al., 2022) 

GaoFen-3 satellite 
imagery 

(Hangzhou, 
Zhejiang province, 

China) 

AIR-PolSAR-Seg: A 
Large-Scale Data 
Set for Complex-

Scene PolSAR 
Images 

SVM Overall, 
Accuracy is 

between 
98.48% and 

98.83%. 
(Chen et 
al., 2023) 

AIRSAR L-Band 
(San Francisco Bay, 

Flevoland), 
RADARSAT-2 C-

Band (San 
Francisco Bay, 

Flevoland 

Wishart Locally 
Constrained 

Expansion (WLCE) 

Neural 
Network with 

WLCE 

A = 97.43% 

(Fang et 
al., 2023) 

Flevoland-15, 
Flevoland-14, 

Oberpfaffenhofen, 
San Francisco 

HA-EDNet with Self-
Attention and 

Selective Kernel 
Module 

Hybrid 
Attention-

Based 
Encoder–
Decoder 
Network 

99.39% Overall 
Accuracy 

(Flevoland-15 
Dataset) 

Employing a hybrid attention-based encoder-decoder network (HA-EDNet) by a 
state-of-the-art approach was proposed in (Fang et al., 2023) for PolSAR image 
classification. Self-attention mechanisms are incorporated into this method for 
enhancing the model’s capacity of focusing on suitable features within images, for a 
more meticulous classification. These experiments have been conducted in multiple 
datasets in which high performance has been discovered with respect to earlier 
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methods. The proposed algorithm carried out the tests from various datasets and 
revealed improvement in average accuracy (AA), Kappa coefficient, and overall 
accuracy (OA) when compared to the traditional methods. In a few data sets, a 5% 
growth was reported in the counterpart OA, thereby proving that the extended 
training sample method was efficient in enhancing the classifier's generalization and 
robust capabilities. As more evidence is in the results, satisfactory performance can be 
encountered using the relatively small amount of original training samples. It 
therefore can be considered as an excellent method for Po1SAR image classification, 
assuming the scarcity within the annotated data (Shabayek et al., 2022).  

In recent years, there is indeed a clear trend in pursuing deep learning 
classification over PolSAR imagery, especially with the use of CNNs. Researchers today 
are more focusing on innovative techniques that don't only improve upon accuracy 
but also address certain limitations in computational and dataset sizes. The studies 
presented in Table 1 manifest that a significant shift can be witnessed in the Po1SAR 
image classification field towards deep learning methodologies, especially in the 
leverage of deep CNNs. The researchers have started exploring new avenues, such as 
compact adaptive CNN architectures, composite kernel-based classifiers, and online 
active learning with extreme learning machines. These approaches aim at better 
classification accuracy over the problem of the limited size of a dataset and improve 
computational efficiency. To increase attention mechanisms and hybrid approaches, 
including CNN training with Wishart classification, reveals the necessity of refining 
methodologies in achieving accuracy and efficiency while developing innovation in 
PolSAR image classification research (Al Doghan & Piaralal, 2024). 

3. Methodology 

The methodology as a whole is possibly divided into four primary phases, which 
encompass data collection, initial preparation, feature extraction, and categorization 
or classification. 

3.1 Data Acquisition  

The first phase, data collection, involves using four established PolSAR datasets 
collected online. Two of these datasets were obtained from an aerial system, 
specifically the NASA/Jet Propulsion Laboratory AIRSAR (Moon et al., 2010).  In Moon 
et al. (2010), the Canadian Space Agency RADARSAT-2, a spaceborne system, was used 
for acquiring the two datasets remaining. These diverse datasets make the study have 
a good basis for in-depth analysis and incorporation of both aerial and spaceborne 
systems. The use of both AIRSAR and RADARSAT-2 datasets contributes to a well-
balanced approach by integrating data from alternative acquisition methods. The 
choice supports an in-depth analysis of PolSAR image classification founded on long-
standing sources from platforms of both aerial and spaceborne nature. 

Table 2: Dataset used in the Proposed Study 
Name System & Band Abbr. Date Incident 
SF Bay AIRSAR_L SFBay_L 10-60 Degrees 
SF Bay RADARSAT-2C SFBay_C 30 Degrees 

Flevoland AIRSAR_L Flevo_L 40 – 50 Degrees 
Flevoland RADARSAT-2C Flevo_C 30 Degrees 
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Table 3: Classes Number, the Final Entire Ground Truth (GTD) Size, and Training Size 

In California, USA, San Francisco Bay, the first research region is situated, 
observations there are made by using C-band (SFBay_C) and L-band (SFBay_L) 
frequencies as shown in figure. 1, and 2 respectively. The second area of interest is the 
Flevoland region in the Netherlands, with data collection made by using C-band 
(Flevo_C) and L-band (Flevo_L) frequencies as shown in Figures 3 and 4. The pixels 
set, present in every image, is divided into testing and training sets representing 
regions and types of areas classified. In addition, every image typically consists of 
several channels that correspond to different polarizations and their combinations. 
Every channel within a PolSAR image provides unique information related to the 
structure and composition of the scene captured. All the channels used in most of the 
studies used for this study are capable of defining various features in the image. The 
lowest number of channels that is used in this study is three, while the highest number 
of channels that is used in this study is six, and this is because the standard applied in 
most of the work depicts in the related studies. 

 
 Figure 1: (a) Training Pixel Samples (b) Non-Overlapping Test Regions After 

Preprocessing the SFBay L PolSAR Image. 

  
Figure 2: SFBay_C PolSAR Image: (a) PauliRGB Representation, (b) Associated Ground 

Truth Dataset with Class Labels on the Right After Preprocessing. 

Name Dimensions Classes Train Size Per class Total GTD Size 
SF Bay 900 x 1024 5 ~292 123459 
SF Bay 1426 x 1876 5 500 252500 

Flevoland 750 x 1024 15 120-480 209979 
Flevoland 1639 x 2393 4 500 202000 
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 Figure 3: Shows the Flevo_L PolSAR Image: (a) After Scaling and Logarithmic 

Transformation(b) With Distinctive RGB Colors in Every Class, Ground Truth Land 
Cover Dataset Can Be Seen. 

 
Figure 4: The Flevo_C PolSAR Image: (A) After Logarithmic Transformation and 

Scaling, (B) Ground Truth Land Cover Dataset With Unique RGB Colors For Each Class. 

3.2 Pre-Processing 

The pixel gathered from the images are converted to float and decimal values 
before any feature extraction. Also, it important to mention that pixels are normalized 
between 0 to 1 and any missing or noisy data are removed from the entire four 
benchmark datasets.  

3.3 Feature Extraction using TCN 

 Recently, TCN excelled in many applications in various domains, including 
traffic forecasting, sound event detection, probabilistic prediction, etc. Initially 
introduced (Lara-Benítez et al., 2020; Lea et al., 2016), TCN demonstrated exceptional 
performance in tasks such as video action prediction, classification, and segmentation. 
Through two main steps, TCN operation can be seen. In the first step, low-level 
features are computed by employing CNN models, which encode spatial-temporal 
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information. In the second step, passing of these low-level features is made into a 
model, which can be RNN or CNN for high-level temporal patterns to be captured. In 
this case, the preprocessed pixels are fed into TCN as sequential features, which in turn 
are transformed into a probability distribution. Inputs pass through four stacks of 
residual blocks with two weight normalization layers, two dilated causal convolution 
layers, one ReLU activation layer, and an optional convolutional layer, followed by two 
dropout layers. The very first residual block is different because it uses three dilated 
causal convolution layers (Guo & Yuan, 2020). 

Dilated Causal Convolutional Layer: An input sequence with particular length can 
be taken by this layer in the TCN model for generating a same-length output. It is given 
a “causal” name since activations from future time steps cannot be depended on by 
activations produced at a specific time step. Input to TCN is defined by 
Y=[y_1,y_2,……….,y_i] and a filterf:{0,…..,k-1}.  The following equation is used for 
defining the dilated casual convolutional operation on the ith point of Y is defined 
using the following equation: 

C(y_i )=∑_(a=0)^(k-1)▒〖f(a)〗-y_(i-a.d)                                 (1) 

Where the dilation factor is d, filter size is k, and past direction is indicated by i-a.d. 
In other words, Y is kept as the input sequence by the first layer, whereas the former 
layer output in higher layers is indicated by Y. A dilation factor is there for every 
dilation convolutional layer, and this factor increases exponentially by a factor of 2. 
The dilation factor is used so as to perform the convolution with the order pixel in a 
specific order based on the dilation value. For example, if the value of the dilation 
factor 2 then there will be a convolution of the filter value with the five pixel and the 
tenth pixel etc.  

Weight Normalization Layer (WN): To every dilated convolutional layer, an 
application of this layer is conducted. For this purpose, a particular learning scaling 
parameter is used for weights normalization. In the equation (2), a definition is given 
of the weight normalization operation equation: 

o_j=s_j  (W_j  * x)/(|(|W_j |)|_F+ ϵ)+j                            (2) 

The WN layer input is x, the WN layer output is o, the scale is defined as s_j, the bias 
is set as j, the constant employed for numerical stability is ϵ, the layer’s weight and the 
weights Frobenius norm are  W_j and |(|W_j |)|_F, respectively, for the output channel 
j, while the convolution operator is *.  

The residual block to which the input is submitted undergoes a totally optional 1x1 
convolution layer whose subsequent combination will be made with the output of the 
residual block. Its application is made at the instance where no matching between the 
number of channels in the input and the number of channels in the output is found. 
For all other residual blocks, the same process is repeated again. At last, after the four 
blocks have been processed, the output of the fourth block is passed through one ReLU 
activation layer, a classification layer, one Softmax layer and two fully connected 
layers. Main parameters overview of TCN can be found in Figure 5. This figure 
comprises: dilation factors, number of input channels, and the number of blocks.  
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Figure 5: Entire TCN Architecture 

3.4 Classification using Support vector machine (SVM) 

SVM is one of the most used techniques of machine learning; it offers very useful 
solutions to many problems. Übeyli (2007) proposed SVM which is employed in 
regression, classification, and several other applications. SVM key functionality is its 
mapping of input features into a high dimensional feature field by a nonlinear 
employment. A quadratic optimization problem is SVM training process. The following 
equation is used for defining the hyperplane construction: 

W^T x+b =0                                 (3) 

Where x is the input feature vectors, b is the bias factor, the hyperplane coefficients 
vector is W. The aim is margin maximization between the nearest point and 
hyperplane. Then, the SVM begins to learn the main parameters which are W and b by 
solving a specific optimization problem defined using the following equation: 

min  1/p W^T W+C∑_(i=1)^P▒E_i        s.t {█(〖(W.x+b)≥〗_  1-E_i@E_i≥0,i=1…..p)┤                  

(4) 
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Where W^T W is the manhattan norm, the penalty parameter is defined by C, and 
E_ is the cost function. This optimization problem is solved using sequential minimal 
optimization (SMO), and this requires choosing the kernel function correctly. In this 
study, the polynomial kernel function is the applied kernel function. The kernel 
function applied is the polynomial kernel function. The approach that combines the 
binary SVM classifier is known as error-correcting output codes (ECOC). In this 
approach, the SVM is trained till 2^(n-1)-1 (where the classes number is n), with each 
targeting variant classes combination separation. Each of them is aimed at the 
separation of a variant combination of classes. The final multi-class SVM output is the 
combination of all these separable SVM classifiers results.  

4. Experimental Setup 

The theme of the paper addresses the analysis and classification of PolSAR images 
using advanced techniques of feature extraction. Using multiple datasets, this work is 
aimed at enhancing classification accuracy while probing into the effectiveness of 
several levels of features. This paper discusses four datasets, where each dataset is 
comprised of three feature levels: 6, 4, and 3. For each dataset, it has specific numbers 
of training and testing features as shown in Table 4. The extracted features from TCN 
model are then used to train SVM for classification. Training and testing pixels 
originated from one source image but were taken across different channels. There are 
two primary reasons for training on pixels {Liu, 2022 #28}. First, it used only one 
image per dataset, and also, every pixel belongs to a definite region meant for 
classification. All experiments were conducted on a laptop with an Intel Core i7-8565 
processor, 12 GB of RAM, and an NVIDIA GeForce GTX 310M graphics card, with 2 GB 
of dedicated memory, running under MATLAB and Weka software. In experiments, 
each picture is composed of multiple channels that provide information about a 
certain picture for several polarizations. The size of each channel for all channels 
corresponds to the sizes of the image.  

Table 4: Number of Training and Testing Features 

4.1 Experimental Results  

In this section, the work present the results obtained from our experiments. This 
section discuss how the TCN together with the SVM classifier shows high effectiveness. 
The set of performance metrics across different datasets reveals the impact of 
different feature levels on achieving classification accuracy. From these results, it 
could be inferred that which is more useful for the model or how well can it perform. 
The provided results showcase the performance of a TCN combined with an SVM 
classifier on various datasets with different numbers of features. Let's break down and 
comment on these results measured in table 5.

Dataset No of Training Pixels No of Testing Pixels 
sfbay_l 1462 121997 
sfbay_c 2500 250000 
flevo_l 4211 204023 
flevo_c 2000 200000 
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Table 5:  Results Obtained from the Combination of the TCN and SVM 
Datasets No. of Features TCN + SVM Classifer 

A TP FP K TPR FPR P R F1 MCC ROC RPC 

sfbay_l 6 95.17 116111 5886 0.9 0.952 0.012 0.950 0.952 0.951 0.943 0.996 0.968 

4 95.31 116279 5718 0.9 0.953 0.017 0.952 0.953 0.952 0.941 0.996 0.974 

3 94.55 115356 6641 0.8 0.946 0.018 0.945 0.945 0.945 0.929 0.982 0.920 

sfbay_c 6 99.71 249290 710 0.9 0.997 0.001 0.997 0.997 0.997 0.996 1.000 1.000 

4 99.55 248843 1105 0.9 0.996 0.001 0.996 0.996 0.996 0.999 0.998 0.993 

3 99.47 248677 1323 0.9 0.995 0.001 0.995 0.995 0.995 0.993 1.000 1.000 

flevo_l 6 86.45 176394 27629 0.85 0.865 0.011 0.874 0.865 0.866 0.856 0.986 0.919 

4 84.72 172867 31156 0.83 0.847 0.012 0.858 0.847 0.849 0.838 0.976 0.790 

3 85.76 174977 29046 0.84 0.858 0.011 0.864 0.858 0.859 0.848 0.985 0.912 

Flevo c 6 99.92 199846 154 0.9 0.999 0.000 0.999 0.999 0.999 0.999 1.000 1.000 

4 99.85 199715 285 0.9 0.999 0.000 0.999 0.999 0.999 0.998 0.999 0.998 

3 99.87 199748 252 0.9 0.999 0.000 0.999 0.999 0.999 0.998 1.000 1.000 
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In terms of sfbay_l dataset, with 6 features the TCN + SVM classifier for the sfbay_l 
dataset with six features achieved a true positive (TP) count of 116,111 and a false 
positive (FP) count of 5,886. The Kappa statistic (K) McHugh (2012) for this 
configuration was 0.9. A 0.012 false positive rate (FPR) and 0.952 true positive rate 
(TPR) are demonstrated by the classifier. Precision (P) was calculated at 0.950, with a 
recall (R) of 0.952, leading to an F1 score of 0.951. The Matthews correlation 
coefficient (MCC) Chicco and Jurman (2020) was 0.943. The performance on the ROC 
and PRC metrics were 0.996 and 0.968, respectively, while with 4 features, the 
classifier had a slightly improved performance with a TP count of 116,279 and an FP 
count of 5,718. The Kappa statistic remained at 0.9, but the TPR improved marginally 
to 0.953, while the FPR was 0.017. Precision and recall were both at 0.952, maintaining 
an F1 score of 0.952. The MCC was 0.941, with ROC and PRC scores of 0.996 and 0.974, 
respectively, whereas, with 3 features the classifier achieved a TP count of 115,356 
and an FP count of 6,641. The dropping of the Kappa statistic was to 0.8, the FPR was 
0.018 and the TPR was 0.946. Recall and precision were at 0.945, and this leads to a 
0.945 F1 score. At 0.929, the MCC was lower, and PRC and ROC were 0.920 and 0.982, 
respectively.  

The classifier, in the sfbay_c dataset with six features, has achieved count 710 FP 
and 249,290 TP. 0.9 has been recorded as the high Kappa statistic, while FPR and TPR 
have been 0.001 and 0.997, respectively. Both recall and precision have recorded 
0.997, with a resulting F1 score of 0.997. MMC recorded 0.996, while both ROC and 
PRC are perfect at 1.000. A classifier that had four features scored a count of 1,105 FP 
and 248,843 TP. The Kappa statistic was kept at 0.9, and FPR scored at 0.001 and TPR 
kept at 0.996. F1, precision, and recall scores made 0.996 each. MCC scored 0.999 with 
PRC scores at 0.993 and ROC scores at 0.998. For three features, the classifier made a 
total count of 1,323 FP and 248,677 TP. The value of kappa statistic registered was 0.9 
with a 0.995 TP, and such a low FPR of 0.001; recall, F1, and precision scores all 
registered 0.995. With perfect 1.000 PRC and ROC scores, MCC registered 0.993. 

The dataset classifier of the flevo_1 with six features achieved a count of 27,629 FP 
and 176,394 TP. The Kappa statistic reached 0.85 while the FPR and TPR reached 
0.011 and 0.865 respectively. Recall reached 0.865 and precision reached 0.874 and it 
resulted in a 0.866 F1 score. With 0.919 PRC scores and 0.986 ROC scores, MCC 
reached 0.856. The classifier was provided with 172,867 TP counts while four features 
were available. The FP counts reached 31,156. The values for FPR were recorded at 
0.012 and TPR at 0.847. The Kappa statistic reached 0.83. Recall recorded 0.847 while 
precision recorded 0.858, and this culminated into a 0.849 F1 score. Respective to 
their PRC scores at 0.790 and ROC scores at 0.976, the MCC recorded 0.838. The three 
features obtained a count of 29,046 FP and 174,977 TP by the classifier. FPR recorded 
at 0.011, TPR recorded at 0.858, and the Kappa statistic recorded at 0.84. The three 
features obtained a count of 29,046 FP and 174,977 TP by the classifier. FPR recorded 
at 0.011, TPR recorded at 0.858, and the Kappa statistic recorded at 0.84. Both Recall 
and precision made a score of 0.864 that led to 0.859 F1 score. 0.912 PRC scores. The 
PRC and ROC scores were 0.912 and 0.985 respectively, with MCC recorded at 0.848.  

154 FP count and 199,846 TP count was recorded by the classifier in the flevo_c 
dataset with six features. FPR recorded 0.000 and TPR recorded 0.999, respectively, 
Kappa statistic recorded 0.9. Recall and precision recorded 0.999, that led to 0.999 F1 
score. MCC recorded 0.999 with 1.000 perfect PRC and ROC scores. Four features the 
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classifier attained a count of 285 FP count and 199,715 TP count. Corresponding to 
0.000 FPR and 0.999 TPR respectively, the classifier recorded a 0.9 Kappa statistic. 
The recall of the classifier recorded 0.999 while the precision also recorded 0.999 and 
this resulted in 0.999 F1 score. At respective 0.998 PRC and 0.999 ROC scores, the MCC 
recorded 0.998. With 1.000 perfect PRC and ROC scores, the MCC recorded 0.998.  The 
accuracy achieved was 99% for the fourth and second datasets, while for the first 
dataset, the achieved accuracy is 95.2%. In the third dataset, the lowest accuracy 
reached was with 86.5% performance, and this is due to the reason of classifying the 
number of classes.  

4.2 Confusion Matrix  

With this view, the work now detail the analysis for the matrices generated from 
the four datasets, providing a detailed view of how well the SVM performs on the test 
data. The work can hence evaluate how well the combined TCN and SVM approach 
may do in properly classifying the data by going through these metrics. In this section, 
in addition to the deep learning model, the confusion matrices are presented, as 
extracted from the employed four datasets. These confusion matrices are mainly for 
providing an overview of how well the SVM performs on the test data. It gives an idea 
of how the overall SVM performance has been obtained. The combined confusion 
matrices depicted in Figures 6, 7, 8, and 9 illustrate how the proposed TCN with SVM 
model performed very effectively. 

 
Figure 6: Sfbay_l Performance using TCN Combined with SVM Classifier Based on 6, 4, 

and 3 Channels 
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Figure 7: Sfbay_c Performance using TCN Combined with SVM Classifier Based on 6, 4, 
and 3 Channels 

In Figure 6, the first matrix, confusion matrix is examined. It is structured with 
target classes along the x-axis and the predicted classes which the classifier generates 
along the y-axis. Color-coding is applied, using green regions to refer to correctly 
classified images, and red regions for those classified wrongly. The top and the first 
row of the matrix comprise six major cells. The first cell will carry an integer, that 
counts the number of times correctly classified in this instance. For the first class, there 
are 78653 such integers. The percentage accompanying is obtained by dividing the 
above count by the total number of features, which is 121997. This pattern continues 
in the first row of the cells, which is representation for several classes; the second last 
cell in the first row is the count of number of wrongly classified instances. 

This trend is repeated for rows 2 through 5, in that they display performance for 
their respective classes. As each has two percentages, cells are added to the bottom 
row of the confusion matrix. Each cell first percentage is green, indicating it as 
precision, while its red percentage is the false discovery rate. Similarly, there also exist 
two percentages in the last column of the matrix. The percentage in green represents 
sensitivity. That is, the rate of true negatives in red. Lastly, two percentages are 
represented by the cell on the lower right of the confusion matrix. One in red and the 
other in green. The red percentage represents the overall rate of misclassified 
features; percentage in green, overall accuracy of the entire dataset being classified 
correctly. 



Enhanced PolSAR Image Classification Using Deep Convolutional and Temporal 
Convolutional Networks 

211 

 
Figure 8: Flevo_l Performance using TCN Combined with SVM Classifier Based on 6, 4, 

and 3 Channel 

 
Figure 9: Flevo_c Performance using TCN Combined with SVM Classifier Based on 6, 4, 

and 3 Channel 
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5. Discussion 

The entire field of PolSAR image classification underwent drastic changes with the 
addition of sophisticated machine learning techniques, especially deep models. 
Although classical approaches formed a foundation, a whole array of bottlenecks was 
encountered, including difficulty in processing large and complex datasets and being 
highly reliant on the extraction of manual features. With the advent of deep learning, 
prospects opened up for more automated, accurate classification schemes for large 
volumes of high-dimensional PolSAR data. However, these advancements carry the 
challenges of many deep learning models that require extra demand on computation 
and additional large datasets for training. This study pivots to pioneer the hybrid 
framework by joining TCNs with SVMs, which improves its classification performance 
and avoids the problem of computational inefficiency in real-time applications. This 
way, the model presents a highly efficient solution for PolSAR image classification 
using TCNs' ability to capture spatial-temporal features and SVM's robustness in the 
classification. The salient feature of the framework, sliding-window technique, also 
reduces computational demands and is, therefore, quite suitable for practical 
implementation on a large scale. 

Results of this study reveal that TCNs-SVMs hybrid classification is highly efficient 
for PolSAR images. This kind of approach uses the complementary strength of both the 
models - TCNs in capturing complicated spatial and temporal patterns while the SVMs 
do perform strongly for classification. Experimental results over varied accuracy 
between 86.45% and 99.92% demonstrate the model performs exceptionally well 
when compared across different datasets, even with relatively few training samples. 
The sliding window method used in this paper reduces computational expense and 
makes it much more suitable for real-time applications than traditional deep learning 
strategies. In addition, residual blocks and dilated causal convolutions in the TCN 
architecture make it possible to deal with long sequences without loss of accuracy. 
Quantitative results also show that even with fewer input features, the proposed TCN-
SVM framework can achieve satisfying accuracy, and thus is a more efficient solution 
for classification tasks of PolSAR images. It observes a consistent low false positive 
rate for the confusion matrices obtained for each dataset, which will be a good sign 
that the model is accurate for classifying PolSAR data. One of the strengths of the TCN-
SVM framework is that it does manage to be highly classificatory with fewer features, 
especially as reflected in the results obtained for the SF Bay dataset. Even with reduced 
feature sets, the model still showed over 94% in its classification accuracy, thus 
further proving its efficiency. This reduction in feature dependency not only speeds 
up the classification process but also reduces the computational burden and, 
therefore, is highly applicable to real-time or near-real-time operations. 

Performance on the SF Bay and Flevoland datasets clearly demonstrates flexibility 
in the proposed method for different geographic regions and conditions of imaging. 
Nevertheless, promising results in general are worth emphasizing that performance 
might vary with the complexity of the datasets at hand. For example, dataset Flevoland 
has a higher number of classes; thus, it faces much greater challenges in the 
classification process and, therefore slightly impacts accuracy. These experiments 
present the fact that although the model TCN-SVM is highly effective, there still 
remains room for improvement concerning working with more difficult datasets as 
well as handling class imbalances. Another practical dimension is that it has 
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minimized the requirement of intensive feature extraction to become successful as 
proved with the framework's remarkable success using much leaner feature sets. The 
efficiency justifies its perfect application in the real-time processing application field 
where rapid image classification is a must. Thus, this proposed model can be 
accredited as a practical answer to the challenge of PolSAR image classification 
especially in those applications involving limited or scarce computational resources. 

Beyond these general findings, a closer examination of the technical aspects further 
highlights the robustness and scalability of the TCN-SVM framework. But, to further 
expand the discussion, it would be interesting to go more into the depth of technical 
matters concerning the TCN-SVM hybrid model, especially the adaptability and 
scalability towards different PolSAR datasets. In this paper, TCNs present an efficient 
way to handle sequential and spatial-temporal data, which is an important 
requirement in PolSAR image classification because of the spatial orientation of the 
features with different polarizations. This task particularly suits TCNs as they can 
model long-range dependencies without increasing the computational burden in 
comparison to traditional RNNs or other deep learning approaches. Dilated causal 
convolutions within the TCN framework assist the model in trying to catch small 
detailed details from PolSAR images without losing important information over time. 
This preserves the spatial and temporal patterns of PolSAR data, because minor but 
informative polarization variations may cause the interpretation of the terrain to 
change. Other residual connections in TCNs boost gradient flow at training; therefore, 
deeper networks can be efficient, a factor necessary for achieving high accuracy across 
several datasets, like SF Bay and Flevoland.  

In addition, the SVM classifier introduced after the feature extraction step 
introduces a robustness feature in the classification process. The reason is that SVM 
can very well handle the high dimensional feature space generated by the TCN. This 
will have the advantage of not easily being affected by noise or outliers since it was in 
most cases in the problem studied here, with the existence of speckle noise and other 
distortions. This has led to the consistently low false positive rates across the different 
datasets which makes the model a feasible device for real-world applications. Another 
technical strength of the TCN-SVM framework is that it can work well even when using 
smaller training datasets. Unlike most other deep learning models which would not be 
able to attain good accuracy with small datasets, the proposed model is robust in the 
absence of large amounts of labelled data. This is especially relevant in applications 
involving remote sensing, where it would be very challenging and expensive to obtain 
labelled PolSAR data. A sign that the model has the possibility for transfer to domains 
or datasets where substantial feature engineering or expensive data pre-processing 
are not feasible is indicated when it proves to be accurate with a reduced feature set.  

The sliding-window approach used in this study diminishes the computational 
costs and lightens up the model such that it can be applied in real-time. With the sliding 
window, the model computes on small patches of images to get a more accurate 
classification while intaking reduced data at a given time. This modular approach is 
beneficial when working with large-scale datasets or when deploying the model in 
resource-constrained environments, such as satellite-based systems or field 
operations for disaster management.  Practically, the TCN-SVM framework has the 
potential to be deployed in fields such as environmental monitoring, urban planning, 
and defence. The adaptability of the model to other imaging conditions, as well as 
different geographic locations, makes it particularly useful in tasks like land use 
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classification and deforestation tracking, or even infrastructure development. 
Additionally, its efficiency under limited computational resources offers it a huge 
potential in disaster response operations where real-time data, such as SAR data, is 
quickly needed for rapid and reliable classification.  Overall, the technical innovations 
of this study, ranging from the combined use of TCN's capacity to extract features 
temporally, with SVM's robust classification, dilated convolutions, and the sliding-
window approach, contribute to a more scalable and efficient solution for PolSAR 
image classification. Further research may further delve into the model's potential 
with even more diverse datasets and integrate the best of advanced machine learning 
techniques to enhance classification accuracy and computational efficiency further. 

6. Conclusion 

It combines a novel approach of CNNs applied to TCN in the classification of PolSAR 
data. Compared to deep networks requiring very huge training samples and large 
patches, the TCN consumes low computation complexity and less human intervention, 
allowing it to be an excellent real-time application. Generally, it has the potential in 
improving both segmentation resolution and accuracy in the classification of fine 
spatial resolution SAR images. It is executable on a personal computer and does not 
require special hardware. The method is tested on four benchmark PolSAR sites and 
potentially extended to explore new bands. Further improvement researches 
investigate the combination of EM channels with image processing features within the 
TCN model, focusing solely on real-value EM channels. The approach achieved an 
accuracy of 86% in classifying the various regions, especially in dataset three, flevo_1.  

6.1 Study Limitations 

Although with quite promising results, this work has some significant limitations: 
the datasets used for experiments are not only on a limited scale but also lack diversity 
in terms of variability ranging from those experimentally found in real PolSAR data. 
Model performance should be further analyzed with variety more diverse datasets 
from different geographic locations and imaging systems. The use of preprocessed and 
segmented data is also helpful in that this simplifies analysis but might degrade model 
performance in less controlled or noisier environments. Another limitation is 
computational scalability of the model in terms of its ability to scale with extremely 
large data sizes. Though the sliding-window approach is highly conducive to a 
reduction in computation demands, further optimization might be needed to ensure 
better scalability for greater sizes of PolSAR data. This entails the use of dynamic 
environments, for example, real-time disaster monitoring or rapidly changing 
landscapes, and it leaves model performance as an untouched area of research. Finally, 
this approach may restrain model applicability if data distributions are highly complex 
and especially non-linear, for example, using a conventional classifier like SVM. The 
use of more complex classifiers or unsupervised techniques may open up ways 
towards improvement within classification outcomes. Future work should address the 
limitations outlined above to further validate and improve this model to even better 
extend its applicability across a wider range of PolSAR scenarios 
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6.2 Study Implications 

From a practical viewpoint, the results of this work can be of additional interest for 
the remote-sensing research community and practitioners. The proposed TCN-SVM 
framework appeared to be a promising solution to boost the performance of PolSAR 
image classification in situations with restricted computational resources. This makes 
it viable for application in areas such as land cover mapping, environmental 
monitoring, and disaster management, where high classification accuracy with 
relatively lower computational complexity is the need. For the practitioner, 
streamlined processing of an approach can work to make large datasets analysis 
possible in reality by reducing the high demand on extensive feature extraction 
requirements. Therefore, good performance across various datasets also hints at an 
ability to adapt to different imaging conditions, which may be particularly significant 
for multi-regional or multi-sensor applications. Thus, the hybrid approach based on 
TCN, with its feature-extracting abilities combined with the robust classification 
ability of SVM, is promising and capable of bringing improvements in efficiency in the 
processing of PolSAR data. From an academic perspective, this research is added to 
the fast-growing literature regarding applications of machine learning in remote 
sensing. It gives insights into how deep learning models could be adapted to better 
handle high-dimensional, complex data like PolSAR imagery. It highlights how hybrid 
models might strike a balance between accuracy and computational efficiency, with 
much future innovation likely coming from this direction. 

6.3 Future Research Trends 

There are thus several paths to further research opened off from the back of this 
study's results. One would be to expand the analysis, using diverse datasets from 
different geographic regions and even imaging systems, to establish whether these 
findings also have applicability at more basic levels. Further performance with 
dynamic, real-time datasets will help to open up the applicability in operational 
environments like disaster response or real-time environmental monitoring. In 
addition to that, analyzing some of the other alternative classifiers to SVM would 
further enhance a sense of robustness in handling the kind of non-linear nature that 
the data distribution might take. Use of more advanced algorithms in machine learning 
could include random forests or deep learning techniques like transformers, for 
instance, which would classify better and be computationally efficient. Another 
promising avenue is the exploration of unsupervised learning, which would be a 
positive improvement if labeled data wasn't readily available. Finally, issues of class 
imbalance can be targeted in future work for those datasets that contain huge 
numbers of categories. Adding an attention mechanism to the architecture of TCN 
could introduce capabilities in more complex spatial-temporal relationships within 
the data, thereby boosting related classification outcomes. 
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