
Operational Research in Engineering Sciences: Theory and Applications

Vol. 7, Issue 2, 2024, pp. 417-446

ISSN: 2620-1607

eISSN: 2620-1747

 DOI: https://doi.org/10.31181/oresta/070220

ASSESSING THE QUALITY OF MICROSERVICE AND
MONOLITHIC-BASED ARCHITECTURES: A SYSTEMATIC

LITERATURE REVIEW

Saad Hussein1*, Mariam Lahami2, Mouna Torjmen3

1ENETCom SFAX, ReDCAD Laboratory, University of Sfax, B.P. 1173, 3038 Sfax,

Tunisia, Computer Science and Information Technology, Al-Qadisiyah University,

Iraq,
2,3 ReDCAD Laboratory, National Engineering School of Sfax, University of Sfax,

Soukra Road Km 4, 3038, Sfax, Tunisia.

Received: 13 January 2024

Accepted: 22 June 2024

First Online: 30 June 2024

Research Paper

Abstract: Building a scalable system has been found to be an even greater challenge
than developing software in general, due to the complexity and otherwise involved in its
development. Whereas monolithic applications are made of big entities that are
developed together, independent services sum up the arrays of a micro services-based
architecture. This research work will therefore come up with the framework that would
be used in supporting the migration of organizations and industries into micro services.
This approach gives companies the evaluative methodology for assessing their adoption
of micro services. This approach enables an enterprise to measure its capacity for the
effective implementation of micro services using quality criteria. An SLR was conducted,
as we selected 48 relevant research papers published during the last four years, 2020–
2023. Findings on the quality characteristics of monolithic versus micro services-based
systems were collated to demonstrate how suitable quality attribute metrics help
evaluate these architectural approaches more effectively. Key indicators can thus help
transition from monolithic architectures to a micro services architecture. The outcome
of the literature review brings forth the key quality attributes in addition to their sub-
characteristics as follows: performance, scalability, coupling, cohesion, deployment,
security, development, complexity, maintainability, and availability. The results display
that interest among researchers in quality-driven micro services migration is growing
while an appreciable number of studies are centred on quality enhancement as the main
objective of strategies of migration.

Keywords: Quality Attributes; Software Engineering; Monolithic-Based Architecture;
Software Measurement; Microservice-Based Architecture; Quality Attribute Assessment.

*Corresponding Author: saad.hussain@qu.edu.iq (S. Hussein)

mailto:saad.hussain@qu.edu.iq

Saad Hussein, Mariam Lahami, Mouna Torjmen/ Oper. Res. Eng. Sci. Theor. Appl. 7(2)2024 417-

446

418

1. Introduction

Due to advanced computer technology, monolithic applications confront
bottlenecks and challenges in terms of availability and other problems such as lower
speeds of development and scaling single units 0. As quality assurance becomes an
important challenge in architecture during the process of migration while moving to
or developing systems based upon microservices, QAs including maintainability,
reusability, and scalability take importance in the process of migration (Arzo et al.,
2024; Ziadeh & Al-Qora'n, 2024). Distributed systems become more trend-worthy due
to the robust, scalable, reliable, secure, and fault-tolerant design and cannot be
achievable with the conventional monolithic architectures in most situations due to
the application demands of modern times (Indrasiri & Siriwardena., 2018). Several
companies, such as Netflix, eBay, Amazon, and IBM, have adopted microservices to
augment scalability, maintainability, and flexibility despite their economic and
technical difficulties (Li et al., 2021; Selmadji et al., 2020). However, there is a need for
evidence-based decision-making frameworks to ensure that the migrations are
worthy since automation reduces cost and manages rapid software change (Taibi &
Systä, 2020; Zhang et al., 2020). Microservices also provide various benefits including
elastic scalability, load balancing, and easier deployment yet require proper
consideration of the quality characteristics (Jatkiewicz & Okrój, 2023; Kalia et al.,
2021; Mosleh et al., 2016). The present research works towards systematic evaluation
of monolithic compared to microservices architectures, including comparison of
quality attributes that aid developers to implement MSA and helps towards deeper
understanding of the technological processes involved during the process of migration
(Zhong et al., 2024; Hassan et al., 2020).

A literature review of several research papers compares the quality attributes of
monolithic and microservice-based applications, with a detailed analysis of
microservice-based architecture versus monolithic architecture, using the
Kitchenham methodology. To evaluate and enhance software quality for data
collection, analysis, visualization, and publication. This document uses ISO 25010
Estdale and Georgiadou (2018), a quality standard established for scientific research
software. This paper describes how proper-quality attribute metrics may be selected
to allow the estimation of both monolithic and microservice-based systems more
accurately. The metrics that are being used provide useful measures that will allow for
more accurate estimation of this transition from monolithic to microservice-based
architectures. The focus of this research is on identifying quality metrics that could be
used in estimating software transformed into microservices that is semantically
equivalent.

This work supports organisations, especially software architects, in deciding
whether or not to migrate monolithic systems to microservices. In this work, the
relevant objective measurements that are considered relevant to systems of interest
were assessed, and further discussions and analyses on possible advantages and
disadvantages regarding migration and re-architecting processes can be entertained.
Knowledge gained from characterisation and metrics considered prior to migration
enables the establishment of comparisons over the practical utility of them. Our
contribution to the related study aims to encourage the use of microservices by
making comparisons between mono- lithic systems and microservice-based systems.
We have identified the strengths and weaknesses of previous research in this area. We

Assessing the Quality of Microservice and Monolithic-based Architectures: A Systematic
Literature Review

419

found that microservices are more productive and effective and that improving quality
attributes has an impact on microservice migration processes. In addition to filling any
gaps found during these studies and developing a plan to guide and support the
migration process according to quality standards.

Section 2 presents Background on monolithic vs microservice architectures with
comparison, summary of the process for microservices migration. Section 3 Analysis
of related previous research to set a frame for existing work in the topic. Section 4
description of the methodology and approach followed in this study through research
questions. Section 5 Research questions with Key Findings. Discussion of threats to
validity: Section 6 Conclusion: Section 7 Summary of findings, conclusions, limitations,
and possible future research directions.

2. Background

2.1 Monolithic Architecture

A monolithic architecture is the traditional, unified approach to building a software
program. The term Monolithic is something solid and unified. According to the
Cambridge Dictionary, "monolithic is too large and unable to be changed". Monolithic
architecture is a very old approach for software development that the big companies
Amazon and eBay used in their old approaches. In monolithic architectures
functionalities are encapsulated in a single application. This can simplify development,
testing, deployment, and scalability for small systems with fewer functionalities.
Expanding a monolithic system simply involves duplicating the entire content.
However, as software increases its complexity, constraints tend to surface (Aggarwal
& Singh, 2024). For example, increased complexity can reduce the reliability and
limited scalability can constrain technological advancement. In the traditional
monolithic setup, users relate with a front-end application that services requests
through communication with a database. All the services are running on a platform
with the same code base. Thus, modification to the code base has to ensure that all
services operate smoothly. Adding more services to this set also increases complexity;
it is difficult for a company to implement new features by using this. Furthermore,
each new release forces to restart all the services, which adversely affects the user
experience. A key weakness is the single point of failure-the system crashes if one of
the services crashes, taking all of them down with it (Newman, 2015), as shown in
Figure 1.

Monolithic systems generally start simple but eventually grow to meet business
needs. Including new features may lead to problems such as an inability to scale
particular parts of a system due to tight coupling, hard maintenance code in that
hidden dependencies are silently created, and increased vulnerability to failure as
testing becomes harder. These problems may hinder the ability to make progress
toward future stability, especially when design documentation is outdated or non-
existent, and original developers no longer participate (Al-Debagy & Martinek, 2018).
Although the above bottlenecks apply, monolithic architecture is still possible for
some applications, especially in the development of a proof-of-concept or even a
minimum viable product. Monoliths are easier in the initial development as they use a
single shared code base. It is easier to debug since only one process and one memory

Saad Hussein, Mariam Lahami, Mouna Torjmen/ Oper. Res. Eng. Sci. Theor. Appl. 7(2)2024 417-

446

420

space exists, and it is less complex to visualize (Ponce et al., 2019). Some features of
monolithic applications often have several sections combined into a single large
application which can, in turn display some features (Su et al., 2024).

a. Authorization is the act of giving a user sufficient permission to use a program. It
is, in effect, a response to HTTP requests using data formats like JSON, XML, or HTML.
Underlying business logic drives features and functionality of the application but
usually implemented by the layer of the DBMS.

b. It envelops the database access objects that the application uses. Moreover, the
binding with services or data sources is controlled and managed.

Figure 1: Monolithic Architecture Overview

As the application size increases, the gains of a monolithic architecture must be
weighed against disadvantages. Large monoliths are normally difficult to create,
debug, and maintain over time. Finally, disadvantages replace advantages of the
monolithic design. In such scenarios, a microservices architecture may be the best
choice for the application migration process. Contrary to the monolithic systems,
microservices are mostly loosely coupled, decentralised units of execution (El Akhdar
et al., 2024). Monolithic applications integrate a number of components into one large
application and due to the size of the code base poses most of the challenges for
management and long-term maintenance (Oumoussa & Saidi, 2024).

2.2 Microservice Architecture

It is an architectural style of software development using independent
components, each focused on specific fine-grained business activities and
communicating with each other through well-defined interfaces (Hassan et al., 2020).
A microservice is also a self-contained small service using lightweight protocols for
communication. The use of microservice architecture has gained much popularity as
the new architectural approach for modern applications (Faustino et al., 2024; Schröer
et al., 2021)abase. Each microservice can independently carry out update, testing,
deployment, and scalability operations. Separating domain-specific concerns from
core business functions does indeed achieve separation from other technologies-
creating an independent code base for every service (Alshuqayran et al., 2016). As
such, although microservices do not reduce complexity per se, they decompose
activities into smaller, independently running processes that improve system visibility

Assessing the Quality of Microservice and Monolithic-based Architectures: A Systematic
Literature Review

421

and make complexity more manageable, as depicted in Figure 2. One of the advantages
of MSA is fault tolerance-the application continues functioning even in case some
microservices have failed. In addition, horizontal scaling guarantees that only the
strained microservice needs to be strengthened. For example, each microservice can
use different technologies based upon the business requirements, without any
technological constraints. Microservices break up large applications into smaller
independent services with the following attributes (Andrade et al., 2022):

a. They can be deployed and tested independently, loosely coupled with APIs, have
different technology stacks, and thus are deployed independently.

b. Microservices are developed and operate according to business capabilities. This
is the very reason they enjoy integration with a cloud environment.

c. Such aspects make it easier for developers to handle components with interfaces
that are relatively easier to understand. Lesser numbers of components ease the
coordination and testing, meaning quicker updates and scalable, available
applications.

Figure 2: Microservice Architecture Overview

2.3 Comparison of Monolithic Vs Microservice

Figure 3 and Figure 4 represent the basic differences in monolithic and
microservices architecture. One process represents monolithic architecture, whereas
several processes are involved in the microservices architecture. Microservices
developed in isolation; instead, a monolithic system is developed as a whole
application with classes, functions, and namespaces (El Akhdar et al., 2024). On the
other hand, in a microservice architecture, only the affected microservice needs to be
updated and redeployed with no impact on others (Su et al., 2024).

Saad Hussein, Mariam Lahami, Mouna Torjmen/ Oper. Res. Eng. Sci. Theor. Appl. 7(2)2024 417-

446

422

Figure 3: The Technical Comparison between Monolith and Microservice

Figure 4: Approaches to Software Development: Monolithic and Microservices

2.4 Migration to Microservices

Migrating to microservices is a common strategy for organizations embracing
change in the software architecture to enhance agility and efficiency in the
development of software. Some studies have looked into the changes from monolithic
to microservice architectures. There is evidence that input data such as source code,
logs, execution traces, and use cases help in breaking down applications into
microservices. These techniques are primarily useful when developing new systems
or during a change from a monolithic to a microservices-based architecture (Gill et al.,
2025). The process of migration into microservices is strategic and transformative for
improvement in agility, scalability, and maintainability of the software system. The
paradigm shift is the decomposition of a large, monolithic application into smaller
pieces of loosely coupled services with each accountable for delivering business-
specific functionalities (Indrasiri & Siriwardena., 2018). The assessment involves
breaking the existing monolith to identify its important functionalities and
dependencies. An architecture therefore about microservice is developed according to
the needs of a specific organisation. This process transition also includes
containerization and orchestration, as a modern development practice for simplifying

Assessing the Quality of Microservice and Monolithic-based Architectures: A Systematic
Literature Review

423

the deployment of microservices and management. Along with technical changes, the
process also ensures cross-functional collaboration, continuous integration, and
autonomous teams; however, the migration process itself is complex and doesn't have
a structured framework (Hutcheson et al., 2024). To successfully migrate to
microservices, a comprehensive understanding of the migration journey is necessary
(Newman, 2015) . The migration process involves both technical changes and long-
term systemic changes. It is important to consider both the business and technical
aspects of the architecture. Setting up supporting artefacts and changing the software
development paradigm are key components of the technical migration.

3. Related Work

Our research centres on the transition to microservices and the reasons that drive
individuals to embrace this. We conduct an analysis of reviews to generalize features
and metrics applied in a comparison of monolithic and microservice-based systems.
The contribution of our work is therefore to confirm or refute these findings and
thereby provide valuable insights for practitioners and academics alike. Table 1
Summarized key results which have been discussed in this section. A study in Tapia et
al. (2020) compared microservices against monolithic designs for a web application
and concluded that, in terms of hardware resource usage, cost minimization, and
productivity, microservices surpass the monolithic designs. The study utilized
computer-related metrics such as CPU, disk speeds, memory, and network reception
to prove that microservices outperform monolithic architectures. However, this study
addresses only one quality attribute and excludes the others, like security, and is not
related to cyber-attacks against microservices.

In Li et al. (2021), a work is focussed towards underlining the fact that the
microservices provide agile, reduced developmental time, scalability and flexibility in
terms of choice of technology. However, the organizations must make their resources
adaptable enough to utilize these strengths to the utmost. In Bushong et al. (2021), the
authors categorized approaches and strategies for the analysis of microservice
systems during 2018-2021. The research offers a guideline in making a decision
concerning the analysis of cloud-native systems and discovers security, performance,
and maintainability as significant quality aspects. For scalability and maintainability,
the research demonstrates static code analysis, case studies, and dynamic analysis, yet
it requires more extensive evaluations of decentralized systems.

In Aksakalli et al. (2021), the review of deployment and communication in
microservice architectures was also done, identifying three approaches to the
deployment approach, and seven communication patterns, a total of eight challenges
during deployment, and six challenges during communication, pleading for further
research in topics such as complexity management, monitoring, and security on
microservices. Quality assurance of some of the identified issues of microservices
entails service discovery, data consistency, performance prediction, testing, and
security. Some of the suggested solutions proposed by this study include information-
centric networking to perform service discovery, multi-agent architecture to manage
distributed transaction coordination, as well as automated regression testing to
predict performance.

Saad Hussein, Mariam Lahami, Mouna Torjmen/ Oper. Res. Eng. Sci. Theor. Appl. 7(2)2024 417-

446

424

In the study (Capuano & Muccini, 2022), it was attempted here to elaborate on how
quality attribute improvement drives migration to microservices. After systematically
reviewing 58 research papers, it has been realized that coupling, cohesion-related
attributes, scalability, and performance are related to migration phases. However, the
present study doesn't involve any discussion in relation to the kind of variations the
said attributes cause in different types of migration or their measurability at the
different migration stages. Finally, (Abdelfattah & Cerny, 2023) comprises the review
of the system analysis approaches along with their relevance to automated or human-
centred assessment in microservice systems. The research conducted introduces an
intermediate system representation that decouples the phases of processes that lend
to giving different perspectives in evaluating system quality like performance,
security, and fault tolerance. These studies have informed our understanding of the
microservices as well as informing the development of our evaluation metrics, as
shown in Table 1.

Table 1: List of the Related Reviews
Ref. Type Year Publisher Focus Common

Papers
with SLR

Challenges

(Li et al.,
2021)

SLR 2020 Science Direct Introducing the Quality
Attributes of Microservice

Architecture

21 yes

(Tapia et al.,
2020)

Opinion
Paper

2020 MDPI Applied
Sciences

Comparing Microservices
Vs Monolithic

8 yes

(Bushong et
al., 2021)

Survey 2021 IEEE Analysing
Microservice-Based Systems

6 yes

(Aksakalli et
al., 2021)

SLR 2021 Science Direct Discussing the Deployment
and Communication in MSA

22 yes

(Söylemez et
al., 2024)

SLR 2022 MDPI Applied
Sciences

Challenges of QA in MSA 40 yes

(Capuano &
Muccini,

2022)

SLR 2022 IEEE The QA Contributes to the
Improvement of the
Migration Process

8 yes

(Abdelfattah
& Cerny,

2023)

Rapid
Review

2023 MDPI The QA Helps Improve the
Migrating Process

35 yes

4. Methodology

This paper uses the three stages, planning, reviewing, and reporting, of the
Kitchenham methodology for conducting a literature survey (Abdelfattah & Cerny,
2023; Kitchenham et al., 2009). The review protocol is developed under the planning
phase, while the need for conducting a review is identified. The primary studies
selection, review, data extraction, and synthesis are within the scope of the reviewing
phase of the methodology as discussed in Section 4.2 and Section 4.3. The final report
writing phase includes recording the review, which is made up of observation of the
documents and reporting of the results, all of which will be described in Section 5.
Figure 5 depicts the key steps of the SLR process. The main difference is that any SLR
is distinguished from a traditional literature review in the fact that the search process
will be more exhaustive. An SLR search consists of three phases: manual, automatic,

Assessing the Quality of Microservice and Monolithic-based Architectures: A Systematic
Literature Review

425

and snowballing for the sake of collecting as much relevant literature as possible
(ElGheriani, 2022). Literature review is regarded as one of the basic building blocks of
any kind of research study; all the necessary contexts, relevance, and backgrounds that
relate to the given research problem being investigated.

Figure 5: Systematic Literature Review (SLR) Process

4.1 Planning the Survey

Planning involved verification of the motivation of research, leading to four RQs as
follows:

RQ1: Most critical quality attributes to be addressed during applications' migration
from monolithic architecture to microservices. The question then focuses on
identifying the most dominant quality attributes that lead the migration towards the
microservice architecture; further information provides insight into the motivations
for their transformation.

RQ2: What is the impact of migration on varying application quality attributes?
Answer This question explains what impact the migration process has on different
quality attributes to put a spotlight on various considerations when transitioning to a
microservices design.

RQ3: Compare the monolithic and microservice quality attributes of such
implementations. This question compares quality attributes of both monolithic and
microservice architectures by delineating differences in design, development, and
deployment that impact these attributes and induce the transition.

RQ4: What are the differences in metrics between monolithic and microservice
quality attributes? This question identifies the differences in the quality attributes of
the microservices as compared to the quality attributes of monolithic architecture,
focusing on the different metrics and formulas used to determine the performance of
each system.

4.2 Selection of Primary Studies

All full-text papers were downloaded to conduct the review process, and they were
read and analysed comprehensively. The results are then classified with other
appropriate criteria and discuss with regards to others' evaluation results. Any doubts
and contradictions were cleared, and finally, the final results were presented. Multiple

Saad Hussein, Mariam Lahami, Mouna Torjmen/ Oper. Res. Eng. Sci. Theor. Appl. 7(2)2024 417-

446

426

quality criteria are utilized in the form of metrics with respect to monolithic and
microservices implementation. Since multiple features exist, the most potential ones
have been prioritized for application and excluded less important ones to maintain
feasibility. Before undertaking a quantitative analysis of the quality criteria adopted
for implementing measurement, we established a number of traits to be utilized in
assessment and comparison. The period from 1 January 2020 to 20 July 2023, having
been chosen for review, gave us a current evaluation of research status within the field.
Reviews published within the last few years have highlighted the latest findings and
innovations; therefore, data will still be very current and up-to-date. The manual
search began in January 2020. For selecting reputable journals and conference papers,
five major publishers' digital library portals were used: ACM Digital Library, IEEE
Xplore, ScienceDirect, Wiley, and SpringerLink, as depicted in Table 2.

Table 2: URL with Databases used for Identifying Primary Sources

URL Database

http://www.sciencedirect.com Science Direct

http://dl.acm.org ACM Digital Library

http://www.springerlink.com SpringerLink

https://onlinelibrary.wiley.com Wiley

http://ieeexplore.ieee.org IEEE Xplore

4.2.1 Inclusion Criteria

 The journal or conference in which the paper was published is peer-reviewed.
 Paper is on monolithic and microservice architecture.
 Quality assessment in the paper focuses on primary studies.
 Studies justify impact on specific QAs of microservice and monolithic

architectures.
 Studies are based on ISO/IEC 25010.
 In reality, according to studies, proof on the impact of microservices and

monolithic designs on certain quality attributes is available.

4.2.2 Quality Evaluation

We examine each of the chosen studies on whether it meets the requirements and
addresses one or more of the research questions. In case of contradiction, the results
are shown, and a conclusion is drawn. In order to effectively obtain and store data, a
form is applied as summarized in Table 3.

Table 3: Quality Assessment Checklist

No. Assessment Question

Q1 Does the study clearly state its research objectives?

Q2 Any insights or recommendations of the study toward future directions or practical

applications?

Q3 Have the research measurements used in the work been well defined and aligned with

the objectives of the research?

Q4 Is the research methodology well-articulated and presented?

Q5 Were the principal findings of the study presented clearly in terms of their validity and

reliability?

http://www.sciencedirect.com/
http://dl.acm.org/
http://www.springerlink.com/
https://onlinelibrary.wiley.com/
http://ieeexplore.ieee.org/

Assessing the Quality of Microservice and Monolithic-based Architectures: A Systematic
Literature Review

427

Moreover, each of the quality criteria responses was rated as No (0), Yes (1), or
partially (0.5). Although the final selection of the primary studies was subjected to a
cut set of the criteria, each was assessed and scored individually on how effectively
they matched the stated research objectives as depicted in Table 4.

Table 4: Publication Sources Searched

Source Studies Initially Retrieved Studies After Applying

Exclusion/Quality Criteria

Wiley 232 7

Springer 315 5

ACM 450 8

Science Direct 978 16

IEEE Xplore 255 12

Total 2230 48

This study focuses on analysing the performance of monolithic and microservice

architectures along with different approaches towards quality. From already existing

literature, we have identified quality attributes that need to be considered during the

evaluation of an application based on a microservice. Thus, an architecture analysis

follows that analyses microservices in more detail and how various methodologies

impact their nature. Thus, we compare the value of each characteristic across the

various implementations after evaluating the quality characteristics of various

monolithic and microservice-based systems. The references list comprises selection

of scholarly papers as selected in Figure 6.

Figure 6: Study Identification Process

To answer the RQs presented in Section 4.1, we determined a set of data extraction
criteria. Data items refer to specific information extracted from each primary study
directly in line with the RQs. In order to answer our research questions, we applied
classification criteria to each paper which include the metrics and quality attributes
studied or analysed as highlighted in Table 5.

Saad Hussein, Mariam Lahami, Mouna Torjmen/ Oper. Res. Eng. Sci. Theor. Appl. 7(2)2024 417-

446

428

Table 5: Relevant Data Items Extracted from the Selected Primary Studies

Data item Related RQ Description

Publication’s Year Main Information, N/A Temporal Information of Each Study

Study Title Main Information, N/A Full Title of Primary Study

Publication’s Venue RQ3
Name of the Journal, Conference, Workshop,
Book, symposium, and Magazine. J = Journal,
C = Conference, W = Workshop, WO = Wiley

Online, SD = Science Direct

The Method used to

Choose QA

RQ1,RQ2,RQ3 The Method When was the Quality Attributes

Identified

Quality Attributes and

Sub Attributes

RQ1,RQ2,RQ3 Identify Quality Attributes

4.3 Analysing and Synthesizing Data

We analysed the QA results by values, meaning how many times each QA is
referenced in the literature, which is counted as a factor value for each paper. This
helps in the determination of the factors' significance and the literature that focuses
on QA (Ghayyur et al., 2018). Some observations on the data as a whole. A total of 2230
publications was found through database searches and backward and forward
snowballing. Removing duplicates leaves a total of 1662 results of which 48
publications were selected according to inclusion and exclusion criteria, determined
either by the title and abstract or by further content analysis. We closely read all of
these 48 articles so that we could answer data extraction questions. Of the 48
publications, 36 were journal papers (Springer Link =5, ACM =8, IEEE =12, Science
Direct =16, Wiley =7), and 12 were conference papers, as shown in Figure 7.

Figure 7: Classification of the Primary Studies in Accordance with the Publisher

Figure 8 Illustration of the list of primary studies found during the course of this
systematic literature review; we illustrate the count of primary studies by year. Figure
6 Primary Studies by Year from the figure above, it seems that there is great interest
in the subject since the same year MSA was actually proposed, namely 2020. The
largest amount of primary studies was published in 2023, demonstrating the high
degree of interest the research community has shown concerning this emerging topic-
microservice architecture. This number becomes substantially higher when
conference research is included in this count, which reflects the lags in the publication

Assessing the Quality of Microservice and Monolithic-based Architectures: A Systematic
Literature Review

429

of such studies. The results demonstrate that conferences (n = 12, 25) and journals (n
= 36, 75) are the most common venues for publishing pertinent studies, as depicted in
Figure 9.

Figure 8: Year-Wise Distribution of the Number of Primary Studies

Figure 9: Amount of Papers Per Addressed Quality Attribute, Sub-Characteristics, and
Year

5. Research Questions and Findings

ISO standard Liu et al. (2015) outlines a product quality model that can be utilized
as a global standard for the definition of software quality attributes. As such, we
selected those attributes as our initial pool upon which to base our selections. Now,
from this pool, we will decide which of the qualities we shall use as our quality metrics
in our empirical study. The quality model provided by the ISO offers a benchmark for
the evaluation of a general application quality. Although our research mainly examines
the impact of microservice architecture on these attributes, studying ISO's guidelines

Saad Hussein, Mariam Lahami, Mouna Torjmen/ Oper. Res. Eng. Sci. Theor. Appl. 7(2)2024 417-

446

430

on how to assess them will go deep in giving a fuller understanding of how one might
effectively measure the quality criteria we have chosen, as shown in Figure 10.

Figure 10: Details of ISO 25010 Draft 2022

Quality-in-use characteristics refer to such measurable factors that can be applied
to the assessment of the quality of software and point toward the development
process wherein potential problems may have been occurring 42. Indeed, such
characteristics may prove whether or not the software product meets the
requirements and expectations of relevant stakeholders (Souza-Pereira et al., 2022).
For this purpose, we consulted a public research database to gather relevant literature
for this paper. These databases allowed for a deeply advanced searching functionality,
filtering important papers, and the emphasis of certain keywords by their appearance
in titles or in text. Keywords like "microservices" combined with different quality
attributes led us to important papers in our study. In conducting literature search, we
started by opting for a reference as our starting point in the review. That required

Assessing the Quality of Microservice and Monolithic-based Architectures: A Systematic
Literature Review

431

finding the most referenced paper available using the search phrases "microservices,"
"quality attributes," and "migration" (see Table 6).

Table 6: Quality Attributes Were Discussed in the Selected Papers

Y
ea

r

P
er

fo
rm

an
ce

Sc
al

ab
il

it
y

C
o

u
p

li
n

g

C
o

h
es

io
n

D
ep

lo
ym

en
t

Se
cu

ri
ty

C
o

m
p

le
xi

ty

D
ev

el
o

p
m

en
t

M
ai

n
ta

in
ab

il
i

ty

A
va

il
ab

il
it

y

R
el

ia
b

il
it

y

T
es

ta
b

il
it

y

M
o

n
it

o
ra

b
il

it

y
G

ra
n

u
la

ri
ty

2020 4 3 4 5 3 1 2 0 0 1 1 1 1 0
2021 8 5 3 1 2 1 0 0 3 3 0 0 0 1
2022 6 3 0 1 1 0 0 0 0 0 1 1 0 0
2023 3 2 2 1 2 2 3 4 1 0 1 0 0 0
Total 21 13 9 8 8 4 5 4 4 4 3 2 1 1

5.1 Findings of RQ1

Several quality attributes play a cardinal role while moving applications from
monolithic to micro service-based architecture. For example, the quality attributes
and their corresponding sub-characteristics that need to be taken into account in
making this transition involve performance, scalability, coupling, cohesion,
deployment, security, development, complexity, maintainability, and availability.
Table 7 summarizes the quality attributes considered in the selected papers.

Table 7: Quality Attributes Were Discussed in the Selected Papers

Q
A

 a
n

d
 s

u
b

C

h
ar

ac
te

rs

P
er

fo
rm

an
ce

Sc
al

ab
il

it
y

C
o

u
p

li
n

g

C
o

h
es

io
n

D
ep

lo
ym

en
t

Se
cu

ri
ty

D
ev

el
o

p
m

en
t

C
o

m
p

le
xi

ty

M
ai

n
ta

in
ab

il
it

y

 3 4 7 3 4 12 1 5 1 5 7 8 4 46 47 2 3
 10 11 13 13 14 16 6 48 11 27 14 49 50 51 28 14 52
 14 49 43 49 53 54 47 48 47 27 55 56 57 27 46

Study 53 58 59
64 57 56

58 56
65 55

52 60
61

60 61 62 63 28 61
61

 60 66 65 62
 55 32 67

5.2 Performance

They allow for finer-grained scaling, meaning that all the services could scale
independently so that only the required microservices were scaled in, thereby
optimizing resource allocation. In a microservices architecture, all services need to be
loosely coupled; therefore, in-memory calls can no longer be viable for
communication. Performance is generally regarded as a mixture of response time and
throughput (Estdale & Georgiadou, 2018). Throughput is defined as the number of
requests in a time unit for which a microservice is able to process them, with
determination being dependent upon the used technology in development, as well as
by the extent of the internal optimization; this can be evaluated at runtime. Regarding
workload, throughput may be determined through the use of the longest synchronous

Saad Hussein, Mariam Lahami, Mouna Torjmen/ Oper. Res. Eng. Sci. Theor. Appl. 7(2)2024 417-

446

432

call or the average size of messages on asynchronous calls (Hossen et al., 2022).

Of course, there are many performance metrics to be considered while migrating
from monolithic architecture to microservice architecture. Again, the following factors
affect the performance of microservices: response time, utilization of CPU,
programming language, the path length, usage of containers, and wait time. Response
time is defined as the lag between requests and responses. CPU utilization is measured
as the percentage of CPU activity, excluding idle time. The type of programming
language affects network performance. Path length is the number of CPU instructions
executed, and waiting time refers to the processing time that occurs in the service
queues (Chen et al., 2017). While there are potential challenges in performance during
the migration to microservices, strategic planning, optimization efforts, and the
utilization of appropriate technologies can help mitigate these challenges and lead to
a more scalable and resilient system, in the long run (Eyitemi & Reiff-Marganiec, 2020;
Kalia et al., 2021). ISO 25010 attributes, especially those related to performance
efficiency, provide a comprehensive framework for evaluating and ensuring the
optimal performance of a system. Throughput, response time, capacity, and resource
utilization are directly related to how well a system performs its functions, handles
user interactions, and manages its resources. By considering these attributes,
developers and testers can assess, measure, and improve the performance of software
systems throughout their lifecycle (Estdale & Georgiadou, 2018).

5.3 Scalability

Scalability is a crucial factor in migrating from a monolithic to a microservice-based
Scalability architecture. It allows for improved horizontal scalability, isolation of
scaling concerns, flexibility in the technology stack, elastic and dynamic scaling,
improved response to load variability, fine-grained resource allocation, fault isolation,
decomposition of monolithic bottlenecks, and optimized resource utilization.
Microservices also promote fault isolation, reduce bottlenecks in specific components,
and optimize resource utilization across resources, leading to improved system
performance and scalability (Al Qassem et al., 2023; Zhong et al., 2024; Jatkiewicz &
Okrój, 2023). The scalability of a software system is influenced by a number of ISO
25010 properties, including those concerning resource utilization, modularity,
maintainability, and performance efficiency. To be scalable, a system must be able to
handle growing loads as well as adjust to changes and alterations without degrading
its functionality. Developers and evaluators can evaluate and improve the scalability
of software products (Liu et al., 2015).

5.4 Coupling

A software system could be composed of various components put together in
modules, with components of one module able to interact with components of another
module. The level of coupling in a software system defines the strength of
interdependence between its components (Vale et al., 2022). In this regard, there
ought to be a minimization of the level of connectivity of components and modules to
ensure a modular architecture of loose coupling. Minimizing coupling is a fundamental
consideration during the migration from monolithic to microservices. It allows for
greater independence, flexibility, and agility in the development and deployment of
individual services, contributing to a successful and efficient migration process

Assessing the Quality of Microservice and Monolithic-based Architectures: A Systematic
Literature Review

433

(Apolinário & de França, 2021; Hassan et al., 2020). Although coupling isn’t specifically
addressed in ISO 25010, the standard’s emphasis on maintainability and modularity
is in line with the controlling coupling principle of software engineering. Low coupling
systems that adhere to modular and maintainable design principles are likely to
display attributes like adaptability and ease of change that are consistent with ISO
25010 objectives. Coupled with the maintainability features outlined in ISO 25010,
coupling principles can help developers and assessors create and evaluate software
systems that are both dependable and simple to maintain (Bourque, 2000; Estdale &
Georgiadou, 2018; Vale et al., 2022).

5.5 Cohesion

The concept of high cohesiveness in software design is in line with ISO 25010’s
emphasis on maintainability, particularly through the modularity feature. This is true
even though the term "cohesion" is not used specifically in the standard. High
modularity and cohesiveness, where components are arranged to be self-contained,
focused, and readily maintainable, are characteristics of a well-maintained system, as
defined by ISO 25010. In order to guarantee the long-term sustainability and
simplicity of the maintenance of software systems, software engineers and assessors
can find it beneficial to take into account cohesiveness principles in addition to the
maintainability criteria outlined in ISO 25010 (Hasan et al., 2023; Sellami, Saied, &
Ouni, 2022).

5.6 Deployment

Microservice architectures offer small, independent deployable services that can
be developed on multiple middleware stacks and scaled independently. In contrast,
the disadvantages of monolithic designs in which all of the application's logic and data
are bundled into a single deployable unit highlight why microservices address those
shortcomings. Further, microservices back deployments of services and related issues
that have to do with organizing the development teams. The use of smaller services
allows the entire structure to be understood more rapidly by new developers. In
addition, every microservice can be deployed independently, which permits
continuous improvement and faster updates. Technologically, separate microservices
can be given to dedicated teams of development, and then those teams will be given
the ability to focus solely on just one service or feature. The companies should have
autonomy; therefore, teams are free to work without problems which involve other
parts of an application. Each time a feature is introduced or changed in a software
system, it needs to be released into the right environment that suits that deployment,
which could be test, staging, or production.

Deploy ability denotes all forms of artefacts and activities required in the
deployment of the software system. A deployable software system ought to be simple.
In terms of deploy ability, the average build time is an essential measure. This metric
measures in minutes the steps for validation, code compilation, test compilation, test
execution, static code analysis, and application packaging to produce deployable
artefacts. As explained by ISO (2022), microservices often take less time to develop
than a monolithic application. Updating functionality occurs much more rapidly for a
deployable microservice compared to a monolithic application. Strategy behind
deployment would be the key to successful migration from monolithic architecture to

Saad Hussein, Mariam Lahami, Mouna Torjmen/ Oper. Res. Eng. Sci. Theor. Appl. 7(2)2024 417-

446

434

a microservices architecture. For this reason, containerization, orchestration, CI/CD
practices, and checking the way of data migration ahead are also positive migration
enablers. Modern best practices in deployment need to be adopted as points of
technology would only help to reap its rewards, which are promised by the use of
microservices, and thus will have a smooth journey (Söylemez et al., 2024). While
ISO/IEC 25010 does not specifically define deployment, some of its quality attributes
are particularly directly relevant in relation to that phase. Not only must resource
management, maintainability, portability, reliability, and the ease of installation work
together to help insure a smooth and efficient flow through the process of deployment,
but it also must be considered by development teams and deployment teams before it
may be undertaken to ensure the software product is properly deployed so that it
meets the expectations of users in any number of operational environments (Chen et
al., 2017; Hassan et al., 2020).

5.7 Security

In software terms, security means protecting the information and data so that
access is granted on actual premises with permission from the user, system, or entity.
The data dealt with is of extreme importance; therefore, the security aspect requires
to be stringent. However, with this aspect, there lies a risk when putting microservices
architecture into play because it depends on network communication. Because
service-to-service communication typically happens through messaging mechanisms,
security integration needs to be very strong and provision for confidentiality and
integrity. Confidentiality can be provided for data access by just authorized people,
while integrity provides immunity of data by methods like encryption. It is much more
important in a microservices architecture, in which service-to-service communication
happens over open networks, as the risk of potential intrusions increases. Three
significant security vulnerabilities have been identified by monolithic applications:
inappropriate settings for cross-site request forgery, insecure use of command-line
parameters, and poor management of the roles of the users. These concerns are lesser
for microservices because functionality has a specific view or web service and the role
definition of users is much more explicit. However, these latent weaknesses should
not be ignored during software design. Secondly, every microservice typically has its
own security approach, and proper consideration must be taken in regard to problems
these different methods of security may pose. Secure communication between
microservices carries its load on the development process to ensure that it is secure
and, therefore, makes the system complex in terms of security management
(Campbell, 2018).

5.8 Maintainability

Maintainability is one of the most important aspects for a system's transition from
monolithic to microservices architecture. Independent services, modularity, and
incremental updates are indeed facilitated through microservices architecture; these
aspects eventually support the enhancement of the maintainability and adaptability
nature of a system. To effectively leverage these benefits so that the maintained is
sustainable over time, careful planning, continuous monitoring, and strong focus on
documentation are necessary (Chen et al., 2017; Hasan et al., 2023). All of the
maintainability attributes of ISO 25010, for instance modifiability, analysability,
changeability, testability, scalability, and reusability provide an overarching

Assessing the Quality of Microservice and Monolithic-based Architectures: A Systematic
Literature Review

435

framework to evaluate and ensure the maintainability of software products. They
guide practice toward systems that are adaptable, understandable, and capable of
accommodating change within an acceptable time frame (Hasan et al., 2023; ISO, 2022;
Kalia et al., 2021).

Summary about the Response to RQ1: Out of these, it identifies 14 QAs and their
associated sub qualities most relevant to MSA research. Of these QAs, performance
and scalability are the two most worrisome to academics, whereas monitorability and
granularity are also considerably less focused on. But the impact of quality attributes
during the process of migration from monolithic architecture towards microservices
is manifold. Indeed, a successful migration depends largely on the knowledge of these
attributes and cautious strategic planning so that the advantages inherent to
microservices, such as improved performance and scalability, and maintainability, are
realized without decreasing or compromising other critical factors like security and
reliability. However, getting this kind of balance between quality attributes will be
necessary if the optimization and success of a microservices architecture are the
objectives.

5.9 Findings of RQ2

Migration from other third-party libraries may benefit various applications
through diverse quality attributes. Research indicates that changing to an alternative
API of a library may reduce coupling, increase cohesiveness, and make code easier to
read (Alrubaye et al., 2020). In fact, during the detection phase of the migration, one
can give focus to enhancing specific quality attributes. The characteristics of
virtualization and cloud-based platforms have a major influence on quality
parameters such as efficiency, resource elasticity, and security. Hence, a thorough
evaluation and planning for the current portfolio of applications before the database
migration will be of prime importance because this may reflect upon dependent
applications, thus giving rise to design-related challenges (Capuano & Muccini, 2022).
Only through stiff testing of the new database platform with the migrated application
may a smooth migration process be established. Microservice-based architectures
allow each service to be independently developed, modified, deployed, and scaled,
which increases speed, uptime, and reliability in return, thus supporting more
frequent software updates. Microservices together with differing application
development methodologies can greatly influence selected quality indicators, and
performance will be the most significant one (Eyitemi & Reiff-Marganiec, 2020).

Microservice architecture influences QA by improving small service reliability,
maintainability, performance, security, and testability. It provides modularity,
reusability, and deploy ability because of loose coupling and virtualization
technologies such as containerization. Independent testing of every service provides
ease in scalability, rapid roll-out of new features, and flexibility. At the same time, this
raises a major security concern because all services communicate over the network.
However, microservices provide additional security mechanisms that supplement the
advancement of QA (Glen, 2018). The transition from a monolithic to a microservice-
based architecture can significantly impact application quality attributes as defined by
ISO 25010. Microservices allow for greater functional modularity, potentially
improving functional suitability by enabling independent development, deployment,
and scaling of services. They can enhance performance efficiency by enabling

Saad Hussein, Mariam Lahami, Mouna Torjmen/ Oper. Res. Eng. Sci. Theor. Appl. 7(2)2024 417-

446

436

independent scaling of services, but increased inter-service communication may
introduce latency and impact overall performance. Compatibility may be affected due
to changes in data storage, communication protocols, and interfaces. Changes in the
architecture may impact usability, reliability, security, maintainability, portability,
scalability, reusability, testability, deploy- ability, operability, and security usability.
To ensure a smooth and successful migration, careful planning, consideration of
architectural choices, and adoption of best practices in micro services development
and operation are essential (Bajaj et al., 2020; Capuano & Muccini, 2022; Mazzara et
al., 2018; Michael Ayas et al., 2023).

Summary about the Response to RQ2: The change from monolithic to micro service
architecture has both positive effects on various application quality attributes and
overall design quality. Though performance, easier scalability, and faster release have
always been at the heart of mainstream motivators for migration, some other factors
influence the shift toward microservices. These include maintainability, the natural
development of loosely coupled services, and the encouragement of coherent services
to ease reuse as well as make users more agile.

5.10 Findings of RQ3

Understanding the way different architectural mechanisms impact the quality of
an application will stand as a necessity for proper implementation of micro service
architecture. This research will thus attempt to demonstrate the comparison that
exists between monolithic and micro service applications, in terms of just how much
they contrast with each other, as shown in Table 8.

Table 8. Comparison Summary
Performance In microservice architecture, each service

is therefore designed for its optimality and
best performance with respect to its
internal workings, leading to greater
overall performance and resource
utilization.

In a monolithic architecture,
the performance of the whole
system is interdependent, in
that the performance of the
whole system suffers.

Complexity Microservices focus upon the integration
of one single feature and reduces the
complexity of monolithic applications by
breaking them into smaller, manageable
services. However, the development
activities like testing can be more
complex as a result (Campbell, 2018;
Hassan et al., 2020; Valdivia et al., 2019).

The monolithic application will
have everything in one
structure, which is very complex
especially about complexity
(Campbell, 2018; Hassan et al.,
2020).

Size Microservices are small, function-
oriented, independent services that
mainly focus on self-management and
lightweight design with the aim of
improving the agility, scalability, and
autonomy of software. The size and
structure are the key differences between
monolithic and microservice
architecture. For example, the services in
microservice architecture are small in
size and loosely coupled, allowing them
to be developed, deployed, and scaled

The term monolithic
architecture refers to the
traditional approach of
developing an application as
one large and tightly integrated
unit. Such architectures tend to
be large and complex, making it
challenging to scale and
maintain the applications (Ma et
al., 2022).

Assessing the Quality of Microservice and Monolithic-based Architectures: A Systematic
Literature Review

437

independently. The nature of modularity
offers more flexibility, faster delivery, and
greater scalability (Li et al., 2021; Ma et
al., 2022).

Agility The application has been divided into
several independent services. So, the
changes applied to one service will not
affect other parts of the system. It also
allows the applications to be released
faster as well as the problems get
resolved quicker because a change
applied to a service will not influence the
whole application (Andrade et al., 2022).

Because of the strong coupling
among modules that operate
together, changing the code or
function requires extensive
testing (De Lauretis, 2019).

Resilience The whole application has been divided
into several independent services, and
each is maintained by its own database so
that the failure of one service does not
influence other services. In addition, this
modular design also facilitates system
availability maintenance while individual
services are in the process of being
deployed or updated.

Interconnection is strong, so it is
hard to reach resilience. The
application works upon a single
codebase with cautious
planning (Andrade et al., 2022).

Flexibility This architecture, therefore, offers
flexibility; teams can choose the right
tools for a specific task, leverage available
expertise, and incorporate new
technologies into the system without
disturbing the whole system (Capuano &
Muccini, 2022; Valdivia et al., 2019).

This makes the monolithic
architecture more rigid as
compared to the microservices
architecture. Monolithic
systems are defined as being in
single codebase and tightly
coupled components which
makes it increasingly difficult to
scale and maintain the
application as it grows
(Capuano & Muccini, 2022).

Deployment In the case of a microservices
architecture, services can be deployed
independently. Therefore, there is a
lower chance of errors, and deployment
is faster. More importantly, each
microservice can be deployed and rolled
back individually, thus allowing for rapid
and agile development and deployment
(Bandara & Perera, 2020; Esposito et al.,
2016; Selmadji et al., 2020).

In a monolithic architecture, one
needs to deploy the whole
application together at one time,
which in itself is very
cumbersome and also exposes
such systems to higher risks of
deploying errors. This is a one-
time deployment, which in itself
incorporates upgrades, updates,
and patches and, therefore,
constitutes a relatively long
time from the initial
development phase (Bandara &
Perera, 2020).

Coupling Microservices architecture therefore
supports lower coupling as it breaks up
the system into loosely coupled,
autonomous services. The services of
microservices architecture are therefore
independent. That will enable the growth
and evolution of individual services. This

Such are the differences
between microservices and
monolithic architectures along
the dimension of coupling. In a
monolithic architecture, the
system is unified because its
modules are tightly connected

Saad Hussein, Mariam Lahami, Mouna Torjmen/ Oper. Res. Eng. Sci. Theor. Appl. 7(2)2024 417-

446

438

decoupling makes it easy for
microservices to be constructed, tested,
and then deployed one by one.
Transitioning from monolithic
architecture to microservices
architecture is demanding due to the
structural complexity and the reliance on
third-party framework libraries. In
general, more decoupling and flexibility
of a system can be achieved with the
microservices design in comparison to
the monolithic architecture (Capuano &
Muccini, 2022; Taibi & Systä, 2020; Wei et
al., 2020).

leading to tight coupling.
Monolithic applications consist
of interdependent modules that
cannot be extended
independently and are subject
to tying the same technology
stack (Wei et al., 2020; Zhang et
al., 2020).

Cohesion Microservices are more cohesive because
they strongly support modularity and
separation of concerns. This makes it
possible for the microservice to
concentrate on one specific task, which
offers increased coherence and
specialization of services (Sellami, Saied,
Ouni, et al., 2022; Taibi & Systä, 2020;
Zhang et al., 2020).

Monolithic architecture
integrates everything in one
system. Because all the features
are quite tightly coupled
together in the same structure,
monolithic designs generally
tend to have lesser cohesion. It
encourages strong
dependencies and interactions
among different components
that eventually minimize overall
cohesion (Sellami, Saied, Ouni,
et al., 2022; Wei et al., 2020;
Zhang et al., 2020).

Technologies DevOps, Docker, Kubernetes, Lambda,
Java, Python (Capuano & Muccini, 2022).

NET, Java, PHP, or Ruby,
Python/D-
Jango (Capuano & Muccini,
2022; Harris, 2023).

Reusable Software can be divided into clear,
definable modules and functionalities
that teams can exploit for all sorts of
purposes. A feature may be based upon
an existing service originally developed
for a different purpose. This modular
approach enables developers to add new
features without having to start from
scratch, allowing the application to self-
bootstrap (Schneider & Scandariato,
2023).

As the application size increases
along with complexity, it is very
hard to manage and maintain a
codebase. Implementation and
testing might also be more
challenging.

ISO 25010 quality attributes guide the comparison of monolithic and microservice
architectures. Monolithic architectures offer simplicity in design and development,
while microservices offer greater modularity and scalability. They both have their
strengths and challenges, and the choice should align with the project’s requirements
and goals. Monolithic architectures have a single code base, which can lead to less
inter-process communication overhead, while microservices have a unified code base
that simplifies compatibility. The microservice has usability, reliability, security,
maintainability, portability, scalability, and reusability. Monolithic architectures offer
centralized management and a single codebase, while microservices offer modularity

Assessing the Quality of Microservice and Monolithic-based Architectures: A Systematic
Literature Review

439

and scalability. Both have their strengths and challenges, and the decision should align
with the project’s requirements and goals. The ISO 25010 quality attributes serve as a
useful framework for evaluating and comparing the effectiveness of these
architectures in different contexts (Milić & Makajić-Nikolić, 2022).

Summary of RQ3 Reply: Monolithic Vs Microservice Architecture: The
characteristics and trade-offs based on quality attributes are much different. The key
is in how each one determines the overall system attributes. Here, in monolithic
architecture, each quality attribute is locked within itself, and so changing one
attribute might be bound to affect others. In contrast, quality attributes in
microservice architecture are decoupled, and thus a modification in any one does not
affect the others.

5.11 Findings of RQ4

MSA metrics provide an objective means by which architects and developers can
assess architectural quality. They are useful in diagnosing defects or errors, indicating
possible improvement areas, and can be used when prioritizing quality attributes. The
phases and methodologies to be followed in identifying the quality attributes together
with the metrics to be applied to measure them were determined through preliminary
studies such as shown in Figure 11.

Figure 11. The Method used to Choose QA

Depending on the specific aims of each investigation, various metrics were
employed. As indicated in the table below, we identified single attribute metrics and
those that measure multiple quality attributes, which are aggregated in the research
paper (see Table 9).

Table 9. Comparison Summary
Quality Attributes Quality Metrics for Monolithic Quality Metrics for Microservices

Performance (Kalia

et al., 2021; Liu et

al., 2020)

Accuracy (A), Timeliness(T),
Precision (P), Response Time
(R), Throughput (TP),
Latency (L)

Accuracy (A), Timeliness (T),
Precision (P), Modularity Quality
(MQ), Percentage of Runtime Calls
(PRC), Average Entropy (AE), the
Number of Interfaces in a
Microservice (NOI), Size of a

Saad Hussein, Mariam Lahami, Mouna Torjmen/ Oper. Res. Eng. Sci. Theor. Appl. 7(2)2024 417-

446

440

Microservice (SM), Optimum
Resource Allocation (ORA),
Accuracy(A), Probability (PB), Mean
Absolute Error(AE), Root Mean
Squared Error(RMSE)

Performance,
Cohesion (Sellami,
Saied, Ouni, et al.,
2022)

Overall Monolithic System,
Score (OMSS), Normalized
Cohesion Metric(NCM)

Semantic Similarity (SS), Structural
Modularity (SM), Class Similarity
(CS), Overall Monolithic System Score
(OMSS), Interface Number IN, Non-
Extreme Distribution (NED), Inter
Call Percentage (ICP)

Coupling,
Cohesion(Wei et al.,
2020)

Normalized Cohesion
Metric (RFC)

Coupling Cohesion Network
Feature(CCN), Overhead
Modularization (OM), External
Coupling (EC), Composability (CPB),
Fitness function to measure service
quality (FFMS), the Controller
Objects (CO), Subordinate object
(SO)
Percentage of Calls(PC)

Cohesion (Sellami,
Saied, Ouni, et al.,
2022; Taibi & Systä,
2020; Zhang et al.,
2020)

Lack of Cohesion in
Methods (LCOM)

Service Interface Data Cohesion
(SIDC), Service Interface Usage
Cohesion (SIUC), Microservice
Cohesion (MC)

Coupling,
Maintainability
(Apolinário & de
França, 2021)

(OMDM)=(Normalized
Coupling Metric Normalized
Maintainability Metric)/2

Service Importance Distribution
(SID), Service Dependency
Distribution (SDD), Service Coupling
Factor (SCF), Average Number of

Directly Connected services (ACS)
Complexity
(Campbell, 2018;
Hassan et al., 2020;
Valdivia et al., 2019)

Class Count (CLS), Mono-
lithic Complexity Metric
(MCM)=(Normalized
Codebase Size+ Metric
Normalized Code Structure
+Metric Normalized

Dependency Metric)/3

Class Count (CLS), Microservices
Complexity Metric
(MCM)=(Normalized Dependency
Metric Normalized
Intercommunication Metric
Normalized Service

Size Metric)/3
Performance,
Deployment
(Bandara & Perera,
2020)

Monolithic Performance and
Deployment Metric (MPDM)
=(Normalized Throughput
Metrics Normalized Latency
Metrics- Normalized
Deployment Overhead
Metrics)/3

Response Time (RT), Costs(CTS),
Microservice Performance and
Deployment Metrics (MPDM)
=(Normalized Throughput Metrics
Normalized Latency Metrics-
Normalized Deployment Overhead

Metrics)/3
Development,
Maintainability,
Testability,
Deployment,
Portability,
Reliability, Scale
Ability,
P erformance
(Bandara & Perera,
2020; Esposito et
al., 2016; Selmadji
et al., 2020)

 Accuracy, Timeliness, Precision

Deployment Focused on One Function, the
Structural and Behavioural
Autonomy, Internal and External

Assessing the Quality of Microservice and Monolithic-based Architectures: A Systematic
Literature Review

441

coupling, Coupling Between
Microservice (CBM), Structural
Coupling,

Coupling of Service (COS)
Efficiency,
Satisfaction (Souza-
Pereira et al., 2022)

 Task Time(TT), Psychometric
Scale Value (PSV), Response to a

Question(RTQ)

Scalability (Zhong et
al., 2024)

Time of Convergence to an

Adaptation Decision (TAAD)

Time of Convergence to an Adaptation

Decision (TAAD)
Security,
Performance (Kalia
et al., 2021; Liu et al.,
2015)

 Precision (P)

Functional ,
Suitability
(Alshuqayran et al.,
2016; Liu et al.,
2015)

Functional Appropriateness

Measures (FAM)

Functional Correctness

Measures (FCM)

Flexibility (Hossain
et al., 2023)

Coupling Measures (CPM)

Security (Minna &
Massacci, 2023)

Confidentiality Measures (CM)

Integrity Measures(IM)

Size (Kalia et al.,
2021)

Number of Operations (NO),

Number of Services (NS)

The quality attribute applied as an indicator for the evaluation of implementations
in monolithic and microservices is considered to be vital to help in prioritizing a large
number of quality attributes by the system. Various factors which decide the
performance of microservices include path length, container utilization, programming
language, CPU utilization, and response time. Response time pertains to the period
that elapses between the request submission and the response. CPU utilization
pertains to the percentage non-idle CPU time. This means the language of the program
will make a difference on the network performance due to the difference in the
communication protocols.

6. Conclusion

This research has demonstrated that quality attribute metrics enable a more
accurate assessment of monolithic and microservices systems. As the structured
literature review is done, performance and scalability would appear to be major
concerns, but while monitorability and granularity are not viewed as critical ones.
Improving the quality of software becomes a motivation and enhances design, which
makes adopting the microservices approach encourage quality driven development. A
quality-based evaluation will be proposed to help companies evaluate the value of
migration to microservices, thereby enhancing their adaptability in response to
changing technological and business needs. Findings form a basis for further research
on non-functional requirements and show that there is a need for additional
assessment criteria, different quality models, and empirical studies validating
efficiency and scalability. Then, quality attributes in microservices will be further fine-
tuned through the evaluation of different real-world scenarios in the future support of
academic as well as industry efforts that focus on quality in software engineering.

Saad Hussein, Mariam Lahami, Mouna Torjmen/ Oper. Res. Eng. Sci. Theor. Appl. 7(2)2024 417-

446

442

References

Abdelfattah, A. S., & Cerny, T. (2023). Roadmap to reasoning in microservice systems:
a rapid review. Applied sciences, 13(3), 1838.
https://doi.org/10.3390/app13031838

Aggarwal, A., & Singh, V. (2024). Migration aspects from monolith to distributed
systems using software code build and deployment time and latency
perspective. TELKOMNIKA (Telecommunication Computing Electronics and
Control), 22(4), 854-860. http://doi.org/10.12928/telkomnika.v22i4.25655

Aksakalli, I. K., Çelik, T., Can, A. B., & Tekinerdoğan, B. (2021). Deployment and
communication patterns in microservice architectures: A systematic
literature review. Journal of Systems and Software, 180, 111014.
https://doi.org/10.1016/j.jss.2021.111014

Al-Debagy, O., & Martinek, P. (2018). A comparative review of microservices and
monolithic architectures. In 2018 IEEE 18th International Symposium on
Computational Intelligence and Informatics (CINTI) (pp. 000149-000154).
IEEE. https://doi.org/10.1109/CINTI.2018.8928192

Al Qassem, L. M., Stouraitis, T., Damiani, E., & Elfadel, I. A. M. (2023). Proactive random-
forest autoscaler for microservice resource allocation. IEEE Access, 11, 2570-
2585. https://doi.org/10.1109/ACCESS.2023.3234021

Alrubaye, H., Alshoaibi, D., Alomar, E., Mkaouer, M. W., & Ouni, A. (2020). How does
library migration impact software quality and comprehension? an empirical
study. International Conference on Software and Software Reuse, Springer.
https://doi.org/10.1007/978-3-030-64694-3_15

Alshuqayran, N., Ali, N., & Evans, R. (2016). A systematic mapping study in
microservice architecture. 2016 IEEE 9th international conference on
service-oriented computing and applications (SOCA), 1509047816.
https://doi.org/10.1109/SOCA.2016.15

Andrade, B., Santos, S., & Silva, A. R. (2022). From monolith to microservices: Static
and dynamic analysis comparison. arXiv preprint arXiv:2204.11844.
https://doi.org/10.48550/arXiv.2204.11844

Apolinário, D. R., & de França, B. B. (2021). A method for monitoring the coupling
evolution of microservice-based architectures. Journal of the Brazilian
Computer Society, 27(1), 17. https://doi.org/10.1186/s13173-021-00120-y

Arzo, S. T., Scotece, D., Bassoli, R., Devetsikiotis, M., Foschini, L., & Fitzek, F. H. (2024).
Softwarized and containerized microservices-based network management
analysis with MSN. Computer Networks, 254, 110750.
https://doi.org/10.1016/j.comnet.2024.110750

Bajaj, D., Bharti, U., Goel, A., & Gupta, S. (2020). Partial migration for re-architecting a
cloud native monolithic application into microservices and faas. International
conference on information, communication and computing technology, 111-
124. https://doi.org/10.1007/978-981-15-9671-1_9

Bandara, C., & Perera, I. (2020). Transforming monolithic systems to microservices-an
analysis toolkit for legacy code evaluation. 2020 20th International
Conference on Advances in ICT for Emerging Regions (ICTer), 95-100.
https://doi.org/10.1109/ICTer51097.2020.9325443

Bourque, P. (2000). Guide to the software engineering body of knowledge.
https://espace2.etsmtl.ca/id/eprint/20882

Bushong, V., Abdelfattah, A. S., Maruf, A. A., Das, D., Lehman, A., Jaroszewski, E., Coffey,

https://doi.org/10.3390/app13031838
http://doi.org/10.12928/telkomnika.v22i4.25655
https://doi.org/10.1016/j.jss.2021.111014
https://doi.org/10.1109/CINTI.2018.8928192
https://doi.org/10.1109/ACCESS.2023.3234021
https://doi.org/10.1007/978-3-030-64694-3_15
https://doi.org/10.1109/SOCA.2016.15
https://doi.org/10.48550/arXiv.2204.11844
https://doi.org/10.1186/s13173-021-00120-y
https://doi.org/10.1016/j.comnet.2024.110750
https://doi.org/10.1007/978-981-15-9671-1_9
https://doi.org/10.1109/ICTer51097.2020.9325443
https://espace2.etsmtl.ca/id/eprint/20882

Assessing the Quality of Microservice and Monolithic-based Architectures: A Systematic
Literature Review

443

M., Cerny, T., Frajtak, K., & Tisnovsky, P. (2021). On microservice analysis and
architecture evolution: A systematic mapping study. Applied sciences, 11(17),
7856. https://doi.org/10.3390/app11177856

Campbell, G. A. (2018). Cognitive complexity: An overview and evaluation.
Proceedings of the 2018 international conference on technical debt, 57-58.
https://doi.org/10.1145/3194164.3194186

Capuano, R., & Muccini, H. (2022). A systematic literature review on migration to
microservices: a quality attributes perspective. 2022 IEEE 19th International
Conference on Software Architecture Companion (ICSA-C), 120-123.
https://doi.org/10.1109/ICSA-C54293.2022.00030

Chen, R., Li, S., & Li, Z. (2017). From monolith to microservices: A dataflow-driven
approach. In 2017 24th Asia-Pacific Software Engineering Conference
(APSEC) (pp. 466-475). IEEE. https://doi.org/10.1109/APSEC.2017.53

De Lauretis, L. (2019). From monolithic architecture to microservices architecture.
2019 IEEE International Symposium on Software Reliability Engineering
Workshops (ISSREW), 1728151384.
https://doi.org/10.1109/ISSREW.2019.00050

El Akhdar, A., Baidada, C., Kartit, A., Hanine, M., García, C. O., Lara, R. G., & Ashraf, I.
(2024). Exploring the Potential of Microservices in Internet of Things: A
Systematic Review of Security and Prospects. Sensors, 24(20), 6771.
https://doi.org/10.3390/s24206771

ElGheriani, N. S. (2022). Microservices vs. Monolithic Architectures. Al-Mansour
Journal, 37(1), 37-44.
https://journal.muc.edu.iq/index.php/journal/article/view/417

Esposito, C., Castiglione, A., & Choo, K.-K. R. (2016). Challenges in delivering software
in the cloud as microservices. IEEE Cloud Computing, 3(5), 10-14.
https://doi.org/10.1109/MCC.2016.105

Estdale, J., & Georgiadou, E. (2018). Applying the ISO/IEC 25010 quality models to
software product. Systems, Software and Services Process Improvement:
25th European Conference, EuroSPI 2018, Bilbao, Spain, September 5-7,
2018, Proceedings 25, 492-503. https://doi.org/10.1007/978-3-319-97925-
0_42

Eyitemi, F.-D., & Reiff-Marganiec, S. (2020). System decomposition to optimize
functionality distribution in microservices with rule based approach. 2020
IEEE International Conference on Service Oriented Systems Engineering
(SOSE), 1728169720. https://doi.org/10.1109/SOSE49046.2020.00015

Faustino, D., Gonçalves, N., Portela, M., & Silva, A. R. (2024). Stepwise migration of a
monolith to a microservice architecture: Performance and migration effort
evaluation. Performance Evaluation, 164, 102411.
https://doi.org/10.1016/j.peva.2024.102411

Ghayyur, S. A. K., Razzaq, A., Ullah, S., & Ahmed, S. (2018). Matrix clustering based
migration of system application to microservices architecture. International
Journal of Advanced Computer Science and Applications, 9(1), 284-296.
https://doi.org/10.14569/IJACSA.2018.090139

Gill, S. S., Golec, M., Hu, J., Xu, M., Du, J., Wu, H., Walia, G. K., Murugesan, S. S., Ali, B., &
Kumar, M. (2025). Edge AI: A taxonomy, systematic review and future
directions. Cluster Computing, 28(1), 1-53. https://doi.org/10.1007/s10586-
024-04686-y

Glen, A. (2018). Microservices Priorities and Trends.

https://doi.org/10.3390/app11177856
https://doi.org/10.1145/3194164.3194186
https://doi.org/10.1109/ICSA-C54293.2022.00030
https://doi.org/10.1109/APSEC.2017.53
https://doi.org/10.1109/ISSREW.2019.00050
https://doi.org/10.3390/s24206771
https://journal.muc.edu.iq/index.php/journal/article/view/417
https://doi.org/10.1109/MCC.2016.105
https://doi.org/10.1007/978-3-319-97925-0_42
https://doi.org/10.1007/978-3-319-97925-0_42
https://doi.org/10.1109/SOSE49046.2020.00015
https://doi.org/10.1016/j.peva.2024.102411
https://doi.org/10.14569/IJACSA.2018.090139
https://doi.org/10.1007/s10586-024-04686-y
https://doi.org/10.1007/s10586-024-04686-y

Saad Hussein, Mariam Lahami, Mouna Torjmen/ Oper. Res. Eng. Sci. Theor. Appl. 7(2)2024 417-

446

444

https://dzone.com/articles/dzone-research-microservices-priorities-and-
trends

Harris, C. (2023). Microservices vs. monolithic architecture. Retrieved May, 20.
https://www.atlassian.com/microservices/microservices-
architecture/microservices-vs-monolith

Hasan, M. H., Osman, M. H., Novia, I. A., & Muhammad, M. S. (2023). From Monolith to
Microservice: Measuring Architecture Maintainability. International Journal
of Advanced Computer Science and Applications, 14(5).
http://dx.doi.org/10.14569/IJACSA.2023.0140591

Hassan, S., Bahsoon, R., & Kazman, R. (2020). Microservice transition and its
granularity problem: A systematic mapping study. Software: Practice and
Experience, 50(9), 1651-1681. https://doi.org/10.1002/spe.2869

Hossain, M. D., Sultana, T., Akhter, S., Hossain, M. I., Thu, N. T., Huynh, L. N., Lee, G.-W.,
& Huh, E.-N. (2023). The role of microservice approach in edge computing:
Opportunities, challenges, and research directions. ICT Express.
https://doi.org/10.1016/j.icte.2023.06.006

Hossen, M. R., Islam, M. A., & Ahmed, K. (2022). Practical efficient microservice
autoscaling with QoS assurance. Proceedings of the 31st International
Symposium on High-Performance Parallel and Distributed Computing, 240-
252. https://doi.org/10.1145/3502181.3531460

Hutcheson, R., Blanchard, A., Lambaria, N., Hale, J., Kozak, D., Abdelfattah, A. S., & Cerny,
T. (2024). Software Architecture Reconstruction for Microservice Systems
Using Static Analysis via GraalVM Native Image. 2024 IEEE International
Conference on Software Analysis, Evolution and Reengineering (SANER),
9798350330663. https://doi.org/10.1109/SANER60148.2024.00008

Indrasiri, K., & Siriwardena, P. (2018). Microservices for the Enterprise. Apress,
Berkeley, 143-148. https://doi.org/10.1007/978-1-4842-3858-5

ISO. (2022). Systems and Software Engineering—Vocabulary.
https://www.iso.org/standard/71952.html

Jatkiewicz, P., & Okrój, S. (2023). Differences in performance, scalability, and cost of
using microservice and monolithic architecture. Proceedings of the 38th
ACM/SIGAPP Symposium on Applied Computing, 1038-1041.
https://doi.org/10.1145/3555776.3578725

Kalia, A. K., Xiao, J., Krishna, R., Sinha, S., Vukovic, M., & Banerjee, D. (2021).
Mono2micro: a practical and effective tool for decomposing monolithic java
applications to microservices. Proceedings of the 29th ACM joint meeting on
European software engineering conference and symposium on the
foundations of software engineering, 1214-1224.
https://doi.org/10.1145/3468264.3473915

Kitchenham, B., Brereton, O. P., Budgen, D., Turner, M., Bailey, J., & Linkman, S. (2009).
Systematic literature reviews in software engineering–a systematic literature
review. Information and software technology, 51(1), 7-15.
https://doi.org/10.1016/j.infsof.2008.09.009

Li, S., Zhang, H., Jia, Z., Zhong, C., Zhang, C., Shan, Z., Shen, J., & Babar, M. A. (2021).
Understanding and addressing quality attributes of microservices
architecture: A Systematic literature review. Information and software
technology, 131, 106449. https://doi.org/10.1016/j.infsof.2020.106449

Liu, D., Lung, C.-H., & Ajila, S. A. (2015). Adaptive clustering techniques for software
components and architecture. 2015 IEEE 39th Annual Computer Software

https://dzone.com/articles/dzone-research-microservices-priorities-and-trends
https://dzone.com/articles/dzone-research-microservices-priorities-and-trends
https://www.atlassian.com/microservices/microservices-architecture/microservices-vs-monolith
https://www.atlassian.com/microservices/microservices-architecture/microservices-vs-monolith
http://dx.doi.org/10.14569/IJACSA.2023.0140591
https://doi.org/10.1002/spe.2869
https://doi.org/10.1016/j.icte.2023.06.006
https://doi.org/10.1145/3502181.3531460
https://doi.org/10.1109/SANER60148.2024.00008
https://doi.org/10.1007/978-1-4842-3858-5
https://www.iso.org/standard/71952.html
https://doi.org/10.1145/3555776.3578725
https://doi.org/10.1145/3468264.3473915
https://doi.org/10.1016/j.infsof.2008.09.009
https://doi.org/10.1016/j.infsof.2020.106449

Assessing the Quality of Microservice and Monolithic-based Architectures: A Systematic
Literature Review

445

and Applications Conference, 460-465.
https://doi.org/10.1109/COMPSAC.2015.256

Liu, G., Huang, B., Liang, Z., Qin, M., Zhou, H., & Li, Z. (2020). Microservices: architecture,
container, and challenges. 2020 IEEE 20th international conference on
software quality, reliability and security companion (QRS-C), 629-635.
https://doi.org/10.1109/QRS-C51114.2020.00107

Ma, S. P., Liu, I. H., Chen, C. Y., & Wang, Y. T. (2022). Version‐based and risk‐enabled
testing, monitoring, and visualization of microservice systems. Journal of
Software: Evolution and Process, 34(10), e2429.
https://doi.org/10.1002/smr.2429

Mazzara, M., Dragoni, N., Bucchiarone, A., Giaretta, A., Larsen, S. T., & Dustdar, S.
(2018). Microservices: Migration of a mission critical system. IEEE
Transactions on Services Computing, 14(5), 1464-1477.
https://doi.org/10.1109/TSC.2018.2889087

Michael Ayas, H., Leitner, P., & Hebig, R. (2023). An empirical study of the systemic and
technical migration towards microservices. Empirical Software Engineering,
28(4), 85. https://doi.org/10.1007/s10664-023-10308-9

Milić, M., & Makajić-Nikolić, D. (2022). Development of a quality-based model for
software architecture optimization: a case study of monolith and
microservice architectures. Symmetry, 14(9), 1824.
https://doi.org/10.3390/sym14091824

Minna, F., & Massacci, F. (2023). SoK: Run-time security for cloud microservices. Are
we there yet? Computers & Security, 127, 103119.
https://doi.org/10.1016/j.cose.2023.103119

Mosleh, M., Dalili, K., & Heydari, B. (2016). Distributed or monolithic? A computational
architecture decision framework. IEEE Systems journal, 12(1), 125-136.
https://doi.org/10.1109/JSYST.2016.2594290

Newman, S. (2015). Building microservices. O'Reilly.
https://cir.nii.ac.jp/crid/1130282272986497536

Oumoussa, I., & Saidi, R. (2024). Evolution of Microservices Identification in Monolith
Decomposition: A Systematic Review. IEEE Access.
https://doi.org/10.1109/ACCESS.2024.3365079

Ponce, F., Márquez, G., & Astudillo, H. (2019). Migrating from monolithic architecture
to microservices: A Rapid Review. In 2019 38th International Conference of the
Chilean Computer Science Society (SCCC) (pp. 1-7). IEEE.
https://doi.org/10.1109/SCCC49216.2019.8966423

Schneider, S., & Scandariato, R. (2023). Automatic extraction of security-rich dataflow
diagrams for microservice applications written in Java. Journal of Systems and
Software, 202, 111722. https://doi.org/10.1016/j.jss.2023.111722

Schröer, C., Wittfoth, S., & Gόmez, J. M. (2021). A process model for microservices
design and identification. 2021 IEEE 18th International Conference on
Software Architecture Companion (ICSA-C), 1-8.
https://doi.org/10.1109/ICSA-C52384.2021.00013

Sellami, K., Saied, M. A., Ouni, A., & Abdalkareem, R. (2022). Combining static and
dynamic analysis to decompose monolithic application into microservices.
International Conference on Service-Oriented Computing, 203-218.
https://doi.org/10.1007/978-3-031-20984-0_14

Selmadji, A., Seriai, A.-D., Bouziane, H. L., Mahamane, R. O., Zaragoza, P., & Dony, C.
(2020). From monolithic architecture style to microservice one based on a

https://doi.org/10.1109/COMPSAC.2015.256
https://doi.org/10.1109/QRS-C51114.2020.00107
https://doi.org/10.1002/smr.2429
https://doi.org/10.1109/TSC.2018.2889087
https://doi.org/10.1007/s10664-023-10308-9
https://doi.org/10.3390/sym14091824
https://doi.org/10.1016/j.cose.2023.103119
https://doi.org/10.1109/JSYST.2016.2594290
https://cir.nii.ac.jp/crid/1130282272986497536
https://doi.org/10.1109/ACCESS.2024.3365079
https://doi.org/10.1109/SCCC49216.2019.8966423
https://doi.org/10.1016/j.jss.2023.111722
https://doi.org/10.1109/ICSA-C52384.2021.00013
https://doi.org/10.1007/978-3-031-20984-0_14

Saad Hussein, Mariam Lahami, Mouna Torjmen/ Oper. Res. Eng. Sci. Theor. Appl. 7(2)2024 417-

446

446

semi-automatic approach. 2020 IEEE International Conference on Software
Architecture (ICSA), 157-168.
https://doi.org/10.1109/ICSA47634.2020.00023

Souza-Pereira, L., Pombo, N., & Ouhbi, S. (2022). Software quality: Application of a
process model for quality-in-use assessment. Journal of King Saud University-
Computer and Information Sciences, 34(7), 4626-4634.
https://doi.org/10.1016/j.jksuci.2022.03.031

Söylemez, M., Tekinerdogan, B., & Tarhan, A. K. (2024). Microservice reference
architecture design: A multi‐case study. Software: Practice and Experience,
54(1), 58-84. https://doi.org/10.1002/spe.3241

Su, R., Li, X., & Taibi, D. (2024). From Microservice to Monolith: A Multivocal Literature
Review. Electronics, 13(8), 1452.
https://doi.org/10.3390/electronics13081452

Taibi, D., & Systä, K. (2020). A decomposition and metric-based evaluation framework
for microservices. Cloud Computing and Services Science: 9th International
Conference, CLOSER 2019, Heraklion, Crete, Greece, May 2–4, 2019, Revised
Selected Papers 9, 133-149. https://doi.org/10.1007/978-3-030-49432-2_7

Tapia, F., Mora, M. Á., Fuertes, W., Aules, H., Flores, E., & Toulkeridis, T. (2020). From
monolithic systems to microservices: A comparative study of performance.
Applied sciences, 10(17), 5797. https://doi.org/10.3390/app10175797

Valdivia, J. A., Limón, X., & Cortes-Verdin, K. (2019). Quality attributes in patterns
related to microservice architecture: a Systematic Literature Review. 2019
7th International Conference in Software Engineering Research and
Innovation (CONISOFT), 181-190.
https://doi.org/10.1109/CONISOFT.2019.00034

Vale, G., Correia, F. F., Guerra, E. M., de Oliveira Rosa, T., Fritzsch, J., & Bogner, J. (2022).
Designing microservice systems using patterns: an empirical study on quality
trade-offs. 2022 IEEE 19th International Conference on Software Architecture
(ICSA), 69-79. https://doi.org/10.1109/ICSA53651.2022.00015

Wei, Y., Yu, Y., Pan, M., & Zhang, T. (2020). A feature table approach to decomposing
monolithic applications into microservices. Proceedings of the 12th Asia-
Pacific Symposium on Internetware, 21-30.
https://doi.org/10.1145/3457913.3457939

Zhang, Y., Liu, B., Dai, L., Chen, K., & Cao, X. (2020). Automated microservice
identification in legacy systems with functional and non-functional metrics.
2020 IEEE international conference on software architecture (ICSA), 135-
145. https://doi.org/10.1109/ICSA47634.2020.00021

Zhong, C., Li, S., Huang, H., Liu, X., Chen, Z., Zhang, Y., & Zhang, H. (2024). Domain-driven
design for microservices: An evidence-based investigation. IEEE Transactions
on Software Engineering. https://doi.org/10.1109/TSE.2024.3385835

Ziadeh, A., & Al-Qora'n, L. F. (2024). Microservices Architecture for Improved
Maintainability and Traceability in MVC-Based E-Learning Platforms:
RoadMap for Future Developments. In 2024 15th International Conference on
Information and Communication Systems (ICICS) (pp. 1-6). IEEE.
https://doi.org/10.1109/ICICS63486.2024.10638288

https://doi.org/10.1109/ICSA47634.2020.00023
https://doi.org/10.1016/j.jksuci.2022.03.031
https://doi.org/10.1002/spe.3241
https://doi.org/10.3390/electronics13081452
https://doi.org/10.1007/978-3-030-49432-2_7
https://doi.org/10.3390/app10175797
https://doi.org/10.1109/CONISOFT.2019.00034
https://doi.org/10.1109/ICSA53651.2022.00015
https://doi.org/10.1145/3457913.3457939
https://doi.org/10.1109/ICSA47634.2020.00021
https://doi.org/10.1109/TSE.2024.3385835
https://doi.org/10.1109/ICICS63486.2024.10638288

