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Abstract: This paper proposes an intelligent headlight management system for Electric 
vehicles (EVs) based on an adaptive Q-learning framework that considers enhancing 
safety and reducing risks. This includes formulating a Q-learning strategy for real-time 
control of headlights operating in modes suitable for the current conditions and vehicle 
operations. Evaluation of the performance of the adaptive Q-learning system is presented 
in this study in terms of safety metrics such as visibility distance and energy efficiency 
indicators such as power consumption through comprehensive simulations across 
various turning scenarios. These results show significant improvements compared to 
traditional systems with fixed beam patterns and rules-based control systems. This 
approach proves effective and expresses the research prospects of enhancing the safety 
of night-time driving, reducing risks, minimizing energy usage, and improving the overall 
performance of the approach with traditional routing methods, demonstrating its 
superior performance in various scenarios. This paper not only contributes to the 
optimization of last-mile delivery using shipping drones but also highlights the potential 
of reinforcement learning techniques, such as deep Q-learning, in addressing complex 
routing challenges in dynamic, real-world environments in smart logistics. Ultimately, 
further exploration into the utilization of reinforcement learning for complex 
optimization issues across various domains is recommended. 

Keywords:  Risks reducing; Intelligent headlight management; Q-Learning; Electric 
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1. Introduction 

A global trend is moving towards adopting electric vehicles (EVs) as a sustainable 
solution to transport industries (Alinazi et al., 2024). These vehicles are expected to 
have less reliance on fossil fuels, emit fewer greenhouse gases, and improve air quality, 
all of which assist in achieving global sustainability targets (Vaidya & Mouftah, 2020). 
Still, with the rise of EV usage comes the rise of disquiet on the safety and the overall 
functionality of these cars and the light-emitting parts of these cars. The intelligent 
management of headlights has become one of the directions of research whose 
importance cannot be overemphasized since it could significantly reduce the number 
of accidents and enhance road safety and energy efficiency when cars are used in 
various conditions (Munsi & Chaoui, 2024).  

Headlights play a significant role when driving at night or in inclement weather. 
However, these systems are often limited to a specific light intensity, which is not 
always practical for all environments (Wei et al., 2022).  This issue hampers the 
driver’s visibility and causes unnecessary energy consumption in EVs, which run all 
electrical systems, including the lights on battery power. On the other hand, an 
adaptive lighting system can change the degree and angle of the headlights in response 
to other current road and traffic conditions, as well as situational variables like the 
presence of vehicles and pedestrians. If such technologies are utilized, the dangers of 
driving in darkness can be reduced, creating more appropriate and comfortable 
conditions for traffic movement and other road users (Zhang et al., 2021). 

Q-learning can help achieve adaptive headlight control autonomously by 
interacting with the specific environment, where an agent learns from the 
environment (Nkrumah, Cai, & Jafaripournimchahi, 2024).  Q-learning applies to 
headlight control as it helps provide dynamic decision-making based on situational 
awareness and headlight settings preferred by the driver. The approach is quite 
suitable for modern vehicles, particularly EVs, since they are ideal for data-driven 
systems that can learn over time (Zakaria et al., 2024). In addition, using the artificial 
headlight control based on a Q-learning approach may help increase drivers' 
segregated satisfaction levels (Suanpang et al., 2022). Most drivers have different 
driving habits and subjective preferences regarding the desired headlight brightness 
and direction of the beam due to differences in personal experiences (Tresca et al., 
2024). Q-learning systems can learn these adjust preferences automatically, which 
improves the driving experience. Such accuracy is important because of the 
configuration within cities where drivers get frequent dynamic disturbances such as 
sudden weather changes, varying amounts of traffic, and obstructions such as 
buildings and trees that obstruct light (Vaidya & Mouftah, 2020). 

Furthermore, communication of vehicle-to-everything (V2X) technologies can be 
incorporated within the framework of Q-learning to make the headlight management 
system more effective as it utilizes real-time input from the environment (Yusuf et al., 
2024). For instance, cars can warn each other of imminent dangers like roadblocks, 
pedestrians, or cyclists, enabling the headlight system to adjust. Studies show that V2X 
integration with innovative systems can significantly improve traffic safety and 
efficiency (Zhou et al., 2020). Integrated with Q-learning, V2X technologies can 
enhance the intelligent headlight management system's functionality, address safety 
issues associated with driving at night, and achieve an ideal smart city scenario where 
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vehicles and infrastructure communicate for efficient traffic control (Ying et al., 2024). 
Additionally, other challenges must be solved to harness Q-learning in intelligent 
headlight management fully. Among such a challenge is creating an appropriate and 
diverse dataset that represents the complexity of driving in different conditions 
(Mande & Ramachandran, 2024). The learning model demands highly voluminous and 
rich data to optimize its decision-making issue. 

Developing a well-performing generalized model across various scenarios such as 
geographical locations, weather conditions, and times of the day, will be critical 
(Jamjuntr et al., 2024). In addition, it is necessary to take care of ethics about data 
privacy and security of the data about the drivers from whom the data was drawn. 
Another interference is the real-time Q-learning implementations with computational 
complexity and the time required to carry out processes (Souri et al., 2024). It renders 
the algorithm incapable of instantaneously issuing control and lighting changes, as 
even short delays could reduce driving safety. So, it is evident that efficient hardware 
systems and high-level algorithms that can rapidly update Q-values based on the 
newest experiences will be required (Sutton, 2018). Additionally, the acceptance of 
automated systems capable of assuming user vehicle control functions will have to be 
addressed, as some drivers may not be willing to give up control to AI. Finally, it may 
be possible to diminish the hazards of night-time driving by integrating a headlight 
management system that uses a Q-learning framework to manage artificial headlamps 
in EVs (Souri et al., 2024). Such systems, when powered with the capabilities brought 
about by adaptive lighting technologies, reinforcement learning sequences, and V2X 
communication, can improve road safety and increase the efficiency of EVs (Sutton, 
2018). However, obstacles to be addressed include data acquisition, computational 
efficiency, and user acceptance, but developing such intelligent systems may be the 
future of transportation. Research and development in this field will be paramount to 
creating a safe, adaptive, and sustainable driving environment. 

Intelligent headlight management using a Q-learning framework is expected to 
provide significant safety benefits. Such systems can increase visibility for drivers 
while reducing glare to other road users by automatically modifying lighting patterns 
that align with the existing conditions. The system automatically dims the headlights 
when it sees an oncoming car so the driver is not blinded (Chen et al., 2025). Also, the 
systems can alter the position and strength of the headlights if the sensors detect that 
the vehicle is moving around a bend so that the headlights are more effective in 
lighting the road ahead. This ability not only enhances driver situational awareness in 
the short run but also helps protect pedestrians, cyclists, and other vehicles effectively 
(Zhong & Wang, 2025). Nevertheless, some obstacles still need to be overcome to fully 
tap into the benefits of intelligent headlight management systems for electric vehicles. 
First, such advanced development and deployment also come at a cost, particularly 
regarding skill and investment in research and development. The algorithms should 
be thoroughly validated to make sure they adapt and perform to the required 
standards under a variety of situations, such as weather changes and traffic volume 
(Ying et al., 2024). In addition, the existing legal aspects must be altered to allow these 
versatile systems to be incorporated and used by the guidelines provided by relevant 
transportation authorities (Song et al., 2024). Another equally important aspect in this 
case is consumer acceptance. Many drivers may be averse to having automated control 
of headlight systems, arguing that manually operating lights are a better option. 
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Awareness and education campaigns are very important in ensuring drivers know the 
advantages intelligent systems possess in managing headlamp systems and 
eliminating fears of mistrust of the systems. Such an approach could include the 
cooperation of automotive companies, law enforcement agencies, and safety 
organizations to educate the public about the necessity and advantages of adaptive 
lighting as a critical safety element (Zhou et al., 2024). 

1.1 Research Gap 

Despite advancements in the automotive and machine learning domains, a 
significant research gap exists concerning integrating and optimizing adaptive 
headlight management systems tailored explicitly for EVs using intelligent 
frameworks like Q-learning. Current literature and existing systems are limited in 
several ways: 

Lack of Context-Aware Headlight Control: Most traditional headlight systems use 
static or rule-based methods that fail to adapt effectively to dynamic and complex 
driving scenarios. While adaptive lighting systems exist, they often rely on heuristic or 
predefined patterns that do not optimize real-time decision-making based on 
environmental and traffic conditions (Crosato et al., 2024).  

Insufficient Use of Machine Learning Techniques: Although some studies have 
employed machine learning for headlight control, few have explored reinforcement 
learning frameworks like Q-learning to manage headlights adaptively. There is limited 
research on how these algorithms can autonomously learn and optimize headlight 
behaviour based on live feedback from onboard sensors, enhancing visibility and 
safety without manual intervention (Alanne & Sierla, 2022).  

Focus on Energy Efficiency in Headlight Management: Limited studies address the 
dual challenge of maximizing visibility while optimizing energy consumption, which is 
crucial for EVs. The trade-off between efficient lighting and energy management 
remains underexplored, especially when considering the battery constraints specific 
to electric vehicles (Mathurkar & Satal, 2024) 

Evaluation Across Diverse Driving Conditions: Most existing approaches to 
headlight management have not been rigorously tested across a comprehensive range 
of scenarios, such as varying road conditions, weather patterns (like fog or rain), and 
different levels of traffic density. The effectiveness of Q-learning-based solutions 
under such diverse and realistic conditions has not been thoroughly investigated 
(Morden et al., 2023).  

Consumer Acceptance and Practical Implementation: While technological 
advancements in intelligent headlight systems have been proposed, there is a lack of 
research on user acceptance and the practical deployment of these technologies in 
everyday driving. Moreover, the social and regulatory implications of integrating 
automated headlight systems in EVs need more attention (Kumar et al., 2024).  

Addressing these gaps can lead to developing more adaptive, efficient, and user-
friendly headlight management systems, ultimately reducing risks and enhancing 
safety for all road users. This paper seeks to fill these gaps by implementing and 
evaluating a Q-learning-based framework that optimizes headlight control for EVs, 
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balancing safety and energy efficiency in real-time driving scenarios. 

1.2 Current Challenges 

Headlight management in EVs currently utilizes static or relatively simple rules or 
patterns controlled by conventional headlights. These rules or instructions are not 
satisfactory and adjust too little to the expected responsiveness in changing and 
varying factors such as the condition of roads, weather conditions at particular times, 
or vehicular speeds, which causes inadequate safety and energy efficiency 
performance (Waykole et al., 2021). Furthermore, present systems do not harness the 
advantages of adopting real-time data-driven control adjustments to improve safety 
and performance. 

1.3 Objective 

The main aim of this paper is to showcase how adaptive Q-learning can be 
effectively utilized to optimize the control of an electronic vehicle headlight. The 
objective is to devise a system capable of changing beam patterns automatically in 
light of real-time sensor information and vehicle dynamics using Q-learning, a 
reinforcement learning method known to acquire optimal control actions in changing 
environments. Such an approach is expected to increase safety through better 
visibility, while energy efficiency is expected to be improved by reducing light wastage. 

2. Literature Review 

This section reviews the history of intelligent driving technologies and their 
implementation in light of the advancements in headlight management systems.  

2.1 Intelligent Driving Technologies 

The automotive industry is shifting significantly because of the development of 
smart driving technologies, particularly on issues relating to safety and security, 
consumption of energy, and pollution in the environment. Intelligent driving looks into 
the application of sensors, communication systems, artificial intelligence, and machine 
learning to the working of the car. These systems enable vehicles to detect changes 
happening on the road and then to make and implement decisions based on them 
(Olawade et al., 2024).  

2.1.1 Integration of Sensors in Intelligent Vehicles 

Modern vehicles are equipped with a wide range of sensors designed to acquire 
knowledge regarding the environment around the vehicle, how it functions, and what 
the driver prefers. Examples of this include light sensors, proximity sensors, cameras, 
as well as radar systems, which give the ability to perceive prevailing conditions of the 
road and the environment around the vehicle (Chen et al., 2025; Vaidya & Mouftah, 
2020). The captured information is used as the basis for intelligent systems' decisions. 
In particular, light sensors are essential for systems that control headlights since they 
control beam intensity with ambient lighting and use radar sensors to scan for vehicles 
and obstacles (Chen et al., 2025). This combination improves the view while 
decreasing glare and hence, eliminates some risks. 
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2.1.2 Role of Communication Systems 

The ability of vehicles to communicate with each other and their surroundings 
Vehicle-to-Everything (V2X) is one of the most important aspects of autonomous 
driving solutions. V2X allows for information exchange between vehicles, facilities and 
other traffic participants for the purpose of joint control and anticipatory control. In 
terms of headlights, V2X technologies allow the sharing of data like traffic volume on 
the road, dangerous situations on the road, and the weather. These data can be used 
by headlight control algorithms to adjust the beam settings in anticipation of specific 
situations in order to provide sufficient light while avoiding wasting electricity (Evans 
et al., 2024; Zhou et al., 2020). 

2.1.3 Machine Learning and Autonomous Decision-Making 

Triumphing in intelligent driving technologies are now machine learning systems, 
especially reinforcement learning methods such as Q-learning. These methods allow 
the vehicles to be self-sufficient in coping with various scenarios by learning from the 
past and the environment. In headlight management, Q-learning algorithms can be 
used to provide optimal beam patterns by addressing the safety and energy 
consumption trade-off in real-time. Research has shown these systems are superior to 
the conventional rule-based in terms of their operational scope under various driving 
conditions (Ghaleb & Mirzaliev, 2024; Vaidya & Mouftah, 2020). 

2.1.4 Adaptive Headlight Systems 

Adaptive headlight systems are a significant improvement when it comes to 
intelligent driving technologies. Unlike static or rule-based systems, adaptive systems 
actively change the beam angles, intensity, and spread concerning instantaneous 
parameters. For example, headlights can turn during a bend to shine better on the road 
ahead and narrow the sight angle (Nkrumah, Cai, & Jafaripournimchahi, 2024). Such 
systems operate based on a large amount of data processing with machine learning 
algorithms, where the models learn how to configure lights optimally to make car 
usage more convenient and the road safer. Furthermore, adding adaptive systems with 
Q-learning allows the algorithm to learn and improve over time, as the model 
continuously updates its decision-making process based on collected data ( Nkrumah, 
Cai, & Jafaripournimchahi, 2024).  

2.1.5 Challenges in Implementation 

Revolutionary driving technologies have their work cut out for them. The high 
development price, the intricacy of computation, and the robustness of the datasets 
required are some significant roadblocks that impede their progress. Delays in video 
collection or processing can compromise safety, particularly in headlight management 
situations where quick processing and reaction are imperative (Ghaleb & Mirzaliev, 
2024). The other points for consideration are public acceptance and legal issues, which 
would help in the more extensive integration of automated systems. There is also a 
need for serious reflection on privacy issues regarding data gathered by intelligent 
vehicles so that the users’ trust can be developed (Ghaleb & Basri, 2024; Kamil & 
Abdulazeez, 2024). 
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2.1.6 Future Directions 

The growth of intelligent driving technologies will grow as artificial intelligence, 
sensors and communication networks evolve. Future research will probably be more 
about making these systems more effective and cheaper to fit on more cars, including 
low-end models. Automakers, technology developers, and regulators have to work 
together to develop and promote standards and regulations for intelligent systems. 
Also, the associated artificial intelligence systems can benefit from accurate big data 
and cloud-based algorithms to facilitate robust processes toward improved and more 
secure methods of driving (Sharma & Shivandu, 2024).  In summary, one can consider 
that technologies in intelligent driving constitute the major pillar around which 
innovations in the automotive world revolve, providing remarkable answers to 
address ever-rigid demands such as safety and efficiency. These technologies utilize 
improvements in sensors, communication systems, and machine learning to alter the 
very future of the automobile and the role it plays in society, where technologies such 
as intelligent headlight management systems are only the beginning of what is 
possible. 

2.2 Headlight Control Technologies 

The evolution of headlight control in electric vehicles (EVs) has progressed from 
traditional static systems to more adaptive and sophisticated approaches. Early EV 
models often employed rule-based systems that relied on fixed patterns determined 
by parameters such as vehicle speed or ambient light levels (Hussein et al., 2024; Rani 
& Jayapragash, 2024). While these systems brought some functionality, the incapacity 
to adapt to a dynamic road condition limited its success in terms of safety and energy 
efficiency. Adaptive control approaches have emerged as promising alternatives 
against this. These systems leverage sensor data on real-time ambient light levels, 
weather conditions, and vehicle speed to adjust dynamically the headlight beam 
pattern (Mahadevan & Gurusamy, 2021). Adaptive systems work to continuously 
improve light distribution and effective visibility while reducing energy consumption 
to increase the range of EVs and enhance the overall experience behind the wheel. 
With the recent progress in sensor fabrication and new fast computational algorithms, 
interesting goals of creating adaptive systems capable of intelligent interaction with 
the external environment have become accessible. This versatility increases the safety 
of EVs by providing the necessary illumination level and also helps to lower the 
ecological footprint of EVs through effective energy containment systems (Zhou et al., 
2024). 

The adaptive headlights illustrated on EVs directly incorporate the control logic 
that relies on the sensor measurements; therefore, it involves intelligent decision-
making logic (Figure 1). The system incorporates a light sensor to determine if it is day 
or night using ambient light and a speed sensor to oscillate between low and high 
beams depending on grain level. A front camera sensor is installed in the car, which 
turns high beams into low when the camera captures nearby vehicles and is no longer 
helpful. At the same time, a weather sensor tackles situations in which external 
conditions like rain and fog can qualify the beam pattern used. This way, the 
autonomous feature of the EVs allows the vehicle to change headlight settings every 
time sturdily, thereby saving energy, increasing the vehicle's range, improving the 
driving experience while using the EV (Zhou et al., 2024). 
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Figure 1: Adaptive headlight control system for EVs. 

2.3 Intelligent Control System  

Intelligent control systems are a new generation of systems that can revolutionize 
automotive engineering since they can utilize sophisticated algorithms and real-time 
data and processes to improve the performance and safety of automobiles as systems. 
Artificial intelligence, machine learning, and sensing technologies are incorporated 
into these systems to control complicated and changing situations while driving. This 
section examines the evolution as well as application and problems with intelligent 
control systems and their impact on the functions of the AVs and energy savings. 

2.3.1 Core Components of Intelligent Control Systems 

In modern architecture of vehicles, an intelligent control system typically contains 
multiple loosely coupled components that are meant to perform many tasks, sharing 
an intelligent style similarly done by humans. These include: 

Perception Layer: Employing sensors, radars, and cameras to extract useful 
information from the environment and the internal condition of the car. For example, 
Lidar, radar, and ultrasonic sensors are used to locate hindrances against vehicles. 
Engine functions and primitive controls by the driver are also noted (Rana et al., 2023). 

Decision-making Algorithms: These algorithms are critical in intelligent control 
systems as they allow acquired data to be processed, future events predicted, and the 
best course of action determined. Reinforcement learning (RL) and neural networks 
have been widely used to model decision-making processes under conditions of 
uncertainty (Xu et al., 2023). 

Execution Mechanisms: These include actuators and regulators where the 
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regulators are used in executing decisions such as the decision to adjust angle of 
steering, to stop through brakes and changing engine power output (throttle) (Vaibhav 
et al., 2022). 

This set of components works in the feedback configuration, which allows the 
system to respond rapidly to environmental changes with the effective and efficient 
fulfilment of specified goals, including safety, comfort, energy efficiency, etc. (Liu et al., 
2023). 

2.3.2 Applications in Autonomous Vehicles 

The performance of a vehicle without driver is made possible through the 
intelligent control systems, some of their principal applications are:  

Path Planning: As has been done in the past, navigation systems make use of 
algorithms such as A* and Dijkstra’s. Nonetheless, nowadays with the use of deep 
reinforcement learning (DRL), several approaches are able to dynamically optimize a 
path regarding blocking objects, traffic, and road state (Li et al., 2024). 

Collision Avoidance: Intelligent control systems integrate predictive models and 
sensors to avoid accidents through evasive movements. Individual motor vehicles 
enabled by multi-agent reinforcement learning (MARL) can work with other vehicles 
on the road to make travelling safer. (Rezaee et al., 2024). 

Energy Optimization: These systems control regenerative braking, motor control, 
and battery management to reduce power consumption in EVs. According to other 
studies, Proximal Policy Optimization (PPO) has been able to save a lot of energy 
through adaptive control strategies (Jia et al., 2024). 

2.3.3 Role in Driver Assistance 

Intelligent control systems further improve high-level driving assistance systems 
(ADAS) in semi-autonomous vehicles for features such as adaptive cruise control, lane-
keeping, and automated parking. Such systems incorporate predictive analytics that 
allows for a better understanding of the driver, as well as the motor environment, thus 
producing a better driving experience. Intelligent cruise control systems, for instance, 
are able to constantly change the speed of a vehicle so that it averagely maintains a 
predetermined distance from the vehicle ahead, hence minimizing the likelihood of 
rear collisions and driver fatigue. Moreover, RL-based intelligent parking systems 
continuously learn new ways to park cars in a more efficient manner, allowing for 
complicated parking even under complex configurations (Mehta et al., 2023). 

2.3.4 Control Strategies and Algorithms 

Intelligent control systems employ a variety of methods to define the scope and 
extent of their capabilities, such as the ability to respond dynamically in real-time as 
opposed to being strategically optimal over some time. Among the frequently utilized 
algorithms are:  

Model Predictive Control (MPC): This algorithm is applied for control and 
trajectory planning. It aims to optimize the control input by predicting the system's 
behaviour within a limited period (Chen et al., 2024). 

Fuzzy Logic Control: The control decision-making and programming that utilizes 
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fuzzy pull logic are the most appropriate methods whenever there are uncertainties 
and imprecision of the sensor data and cases when the system requires smooth and 
flexible logic (Tang & Ahmad, 2024).  

Reinforcement Learning (RL): RL is a framework where the control system 
designer specifies the goals, and the RL-based heuristic controller solves the problem. 
Controllers based on RL learn simply by interacting with an environment and thus 
become robust in a variety of applicable situations. Q-learning and actor-critic 
methods are commonly employed techniques in autonomous driving technologies 
(Srinivasan, 2023). 

2.3.5 Challenges in Intelligent Control Systems 

Consequently, even though an intelligent control system has demonstrated 
capabilities to address a vast array of requirements, the following factors contributed 
to its limited implementation widely:  

Data Quality and Availability – The quality, precision, and quantity of 
supplementary training data available dictate the capabilities of an intelligent system. 
Shortage in datasets results in poor or unacceptable levels of confidence in decisions 
made (Aldoseri et al., 2023). 

Computational Complexity—Substantial computing power is required for the 
algorithms to function efficiently, which may be an encumbrance to implementing the 
systems into automotive vehicles (Devane, 2023).  

Integration with Legacy Systems—Inserting intelligent control systems into 
operational motor vehicles involves cost and compatibility issues with existing motors 
(Jasiu nas et al., 2021). 

Additionally, these systems need to be able to function even under extreme 
conditions, including operational and communication failures, geographic obstacles, 
etc. (Jasiu nas et al., 2021). 

2.3.6 Future Directions 

Intelligent control is expected to develop in the direction of improvement of their 
flexibility, expandability and understandability. Suggested key points are:  

Multi-Agent Cooperation: Allowing cars to collaborate to optimize congestion 
management and safety by sharing information and making joint decisions. 

Edge Computing: Transferring computations done on the cloud to the vehicle 
hardware to lower response time and enhance trustworthiness (Kelly, 2024).  

Explainable AI (XAI): Creating systems with simple models to foster faith in them 
and obedience to governmental bodies (Hamida et al., 2024).   

The trend in hybrid control strategies which integrate conventions with artificial 
intelligence techniques is also emerging as a promising area of research and develops 
the expected robustness and flexibility (Bathla et al., 2022; Parambil et al., 2024) 

2.4 Q-Learning in Automotive Applications 

One of the algorithms within the reinforcement learning category is the Q-learning 
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algorithm. This algorithm is attracting attention in automotive applications due to its 
ability to devise reasonable control strategies that compact with ever-changing 
environments (Liu et al., 2023). With respect to EVs, Q – Q-learning has some benefits 
from sequential headlight control as compared to the traditional rule-based or static 
approaches. The advantages are illustrated below: 

Practitioners in Q-learning are remarkable as they need less supervision and can 
effectively provide full-fledged solutions, such as a dynamic headlight system, even 
when the driving conditions are altering (Santos et al., 2024).  

As Q-learning absorbs the experience of controlling various aspects of the driving 
system in the real world and adjusts to ever-changing scenarios, it cross-evolves with 
multiple factors, enabling full control of headlights for safety and efficient energy use. 
(Santos et al., 2024). 

In situations where certain areas of the environment do not need the help of a 
headlight beam, Q-learning is smart enough to redirect them elsewhere, increasing 
energy efficiency and even enhancing performance (Yang et al., 2024). 

With regards to the implementation of Q-learning aimed at vehicle skin light 
control adjustment, this is quite a revolution in the approaches employed in 
automobiles. Other research emphasizes the potential of Q-learning in a number of 
applications, such as autonomous driving vehicles, route planning, and energy 
management of autonomous systems (Wei et al., 2022; Yang et al., 2024). The idea of 
the redevelopment of headlight control through Q-learning technique adjustment will 
help overcome several problems with the headlights of the vehicles and thus improve. 
EV design and safety standards in future EVs. Moreover, combining Q-learning with 
self-adaptive control techniques is a significant revolution in EV technologies. This 
means better safety, more energy efficiency, and improved driver satisfaction. Future 
studies might explore operational aspects and further development to meet the 
growing demand for sustainable mobility efforts. 

2.4.1 Comparative Analysis of Existing Headlight Management 
Approaches 

In order to provide a baseline for the headlight controller design, it is important to 
analyse the state of the art of EV headlight management strategies. These can be 
grouped into three broad categories: static rule-based systems, sensor-driven 
adaptive, and intelligent machine learning-driven systems. A comparison of their 
advantages and disadvantages illustrates the originality of the Q-learning methods: 

This analysis indicates that conventional headlamp control systems are not enough 
to meet the fast-changing needs of a contemporary electric vehicle. The proposed Q-
learning-based system provides a possibility for change for the better as it integrates 
reinforcement learning. This development, when integrated, may enhance safety and 
energy efficiency along with flexibility, effectiveness, and intelligent decision-making 
in real-time, thus making further applications of reinforcement learning in intelligent 
driving technologies even wider. To clarify some issues related to the distinctive 
characteristics of Q-learning, the following section outlines its comparison with other 
decision-making and control methods, with a focus on the specific advantages of Q-
learning.  
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Table 1: Comparative Analysis of Existing Headlight Management Approaches 
Approach Strengths Weaknesses Novelty of Q-Learning 

Static Rule-
Based 

Simple, reliable, cost-
effective 

Lack of adaptability, 
inefficient, limited to 

simple scenarios 

Q-learning offers 
adaptability and 

optimization. 
Adaptive 
Sensor-
Driven 

Real-time response, 
improved efficiency, and 

safety 

Reliant on sensor quality, 
limited predictive 

capability, high cost 

Q-learning provides 
proactive decision-making 

and learns from experience. 
Intelligent 
ML-Based 

Adaptability, 
optimization, scalability 

Computationally 
intensive, data-

dependent, reliability 
challenges 

Q-learning offers simpler 
implementation and 

efficiency while maintaining 
performance. 

Q-Learning-
Based 

Adaptability, efficiency 
optimization, simplicity, 

proactive decision-
making, scalability 

Potential for 
computational overhead 

A unique combination of 
reinforcement learning for 

headlight control offers 
significant advantages over 

existing approaches. 

2.4.2 Comparison   

The advanced Engineering techniques for decision-making and control systems 
have also resulted in investigating several approaches such as rule-based, heuristic, 
and several machine learning solutions. Each of these approaches meets some 
requirements but also has its own limitations. One such promising method that has 
surfaced is Q-learning, a reinforcement algorithm that has the capability to instantly 
switch between different environments and learn the best possible policies while 
interacting with the system (Antonopoulos et al., 2020). 

2.4.3 Rule-Based Systems  

Just as their name implies, rule-based systems follow a predetermined set of rules 
in their decision-making processes. This sounds beneficial because it’s easy to apply 
these systems and they don’t take much computing power. However, it also means that 
they are only useful in areas that can be perceived as non-dynamic or predictable. The 
problems arise when the systems deal with complicated situations, as they do not 
seem to transfer or learn well (Machado et al., 2024). 

2.4.4 Heuristic Methods 

The heuristic method is defined by using judgmental or simpler rules to arrive at 
the desired solution. It’s less risky and less costly than seeking answers through 
exhaustive search methods, but it’s only effective if the heuristics used are sound in 
logic and construct, so there’s often a risk of not reaching the optimal answer (Azevedo 
et al., 2024). 

2.4.5 Machine Learning Approaches 

There’s a growing body of literature on supervised and unsupervised machine 
learning, and many have been quite impressed with these two's modelling and 
forecasting abilities. When faced with intricate and multi-dimensional problems, these 
variants can perform well across different contexts. Nonetheless, large amounts of 
labelled data and processing power are often prerequisites, ironically limiting its use 
in real-time or low-data situations (Taye, 2023). 
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2.4.6 Boundless Attributes of Q- Learning 

Q-learning faces no competition in that it integrates the abilities of learning by trial 
and error with adaptability. In contrast, Q-learning can construct its own strategies 
based on the environment's response rather than relying on heuristics or rule-based 
systems. This capability allows it to effectively compete with stochastic and dynamic 
variables, as in the case of EV charging optimization or Real-time traffic management 
(Manakitsa et al., 2024). In addition, Q-learning does not rely on labelled datasets, an 
important drawback of other traditional machine learning methods. It then seeks for 
active collaboration with the environment which makes it ideal in scenarios where 
labelled information is insufficient or when the environments keep changing 
(Alzubaidi et al., 2023). 

2.4.7 Comparison Perspective 

The comparing table shows some of those differences and allows us to understand 
the basic advantages of Q-learning. It can adjust and learn on the go, making it perfectly 
suited for managing anything complex. True, its training phase can be quite resource-
intensive. However, policies one gets from this process tend to be better than those 
gotten from other more efficient methods in terms of utility in dynamic settings 
(Papadopoulos et al., 2024). 

Table 2: Comparison Addresses the Differences Between Rule-Based Systems, Heuristic 
Techniques, Various Machine Learning Methods, and Q-Learning 

Issues Rule-Based Heuristic Other ML 
Approaches 

Q-Learning 

Context Based on 
predefined rules 
and logic, often 

tailored to 
specific scenarios 

without 
adaptation. 

Utilizes heuristic 
strategies or 

expert knowledge 
to approximate 

solutions. 

Employs general-
purpose machine 

learning models for 
prediction or 

decision-making. 

Adaptive learning 
through trial-and-

error interaction with 
the environment to 
optimize policies. 

Benefit Simple to 
implement; 

requires minimal 
computational 

resources. 

Faster 
computation 
compared to 
exhaustive 

searches; can 
yield good 

approximations. 

Flexible and can 
generalize to a 

variety of contexts; 
capable of 

leveraging large 
datasets. 

Learns optimal 
solutions dynamically; 
adaptable to complex 

and dynamic 
environments. 

Limitation Inflexible; fails in 
complex or 

dynamic 
scenarios; relies 

heavily on human 
expertise. 

May not find 
globally optimal 
solutions; highly 

dependent on 
quality of 

heuristics used. 

Often requires large 
labelled datasets; 

high computational 
complexity; lacks 

real-time 
adaptability. 

Requires significant 
computational 

resources for training; 
performance depends 

on exploration-
exploitation balance. 

2.4.8 Future Prospects 

Nurtured by the optimization of decision-making in real-time, Q-Learning can also 
be used in many intelligent systems, which have many doors to their advancement in 
the centre of future research work. This may involve combining Q-learning with other 
machine-learning techniques in order to reduce the computational cost and increase 
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the scalability and efficiency of such models (Qi et al., 2024). What is unique regarding 
Q-learning is that it can learn new solutions in a dynamic manner which makes it very 
versatile. The following comparison addresses the differences between rule-based 
systems, heuristic techniques, various machine learning methods, and Q-learning.  

2.5 Advantages of Q-Learning 

Q-learning is superior in certain key aspects:  

Integration and On-the-Fly Improvements: In contrast to both rule-based and 
heuristic techniques, Q-learning adjusts strategies on its own as it learns and practices 
from the most recent information received. Hence, this allows optimum solutions for 
intricate and ever-changing aspects like stochastic traffic probabilities or other 
stochastic factors.  

Need for Data: Other machine learning methods require quite a few required 
labelled datasets, and Q-learning is not one of them. There are situations where such 
datasets are not available or the conditions are really fluctuating, and this method 
works best by concentrating on the environment.  

Idleness Deficiency: Because Q-learning is a continuous process and requires 
feedback, its advancements can be applied to areas that interface with few data 
resources, such as optimizing an electric vehicle’s charging system, managing traffic in 
real-time, or controlling headlights dynamically.  

The merits of Q learning, especially the self-adaptation to change and the ability to 
make decisions in real-time, position Q learning as an effective, transformative 
technique in car and intelligent systems applications. The only disadvantage is the 
temporal cost during the learning process training. However, since the system is 
capable of real-time optimization with no learning supervision, it is best used in 
complicated systems where change occurs at a fast pace. 

2.6 Risks Reducing through Intelligent Headlight Management 

Driving at night or in bad weather is risky, mainly due to poor visibility and 
difficulty managing the headlights. Most of the existing standard headlight systems, 
which have fixed or manually adjustable beam patterns, do not adequately solve these 
risks, which might compromise safety. The drawbacks of these traditional systems 
become apparent when the light output must be changed quickly, for example, while 
taking sharp turns, entering dark areas suddenly, or being staked by bright headlamps 
in frontal vehicles. These deficiencies increase the risk of accidents, which may harm 
drivers and other road users like pedestrians and cyclists (Kang & Kwon, 2021). 

Intelligent headlight management systems, especially those using Q-learning-
based frameworks, have emerged as a powerful solution for mitigating these risks 
(Zhang et al., 2023). The possible interference of different sensors becomes useful 
because such systems allow for automated control of the headlight beam patterns 
regarding the required setup. The adaptive learning ability of Q-learning, owing to its 
continuously evolving system architecture, implies that even past inefficiencies will 
significantly improve the entire system in the future.  This adaptability ensures that 
headlights are permanently configured to provide the best possible visibility, even in 
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rapidly changing or complex driving environments (Chen et al., 2025; Zhang et al., 
2023). 

The intelligent control of headlights can help prevent glare to oncoming vehicles 
and, thus, is one of the techniques that offer significant safety value. The automatic 
feature of the system identifies any oncoming cars. It adjusts the lights according to 
beam strength and angles to avoid temporarily blinding the other drivers, which is an 
occurrence that causes many accidents (Evans et al., 2024). The system can also take 
advantage of better visibility by directing the headlights’ position to the areas most 
likely to contrast the road, assisting drivers in sighting possible interruptions 
(Nkrumah, Cai, Jafaripournimchahi, et al., 2024). 

From an energy efficiency perspective, intelligent headlight management is crucial 
in optimizing power consumption. EVs have limited energy resources, and efficient 
management of all systems, including headlights, is essential for maximizing range. By 
selectively adjusting the intensity and distribution of light based on current needs, the 
Q-learning-based system minimizes unnecessary energy usage while ensuring that 
safety is never compromised. Furthermore, using such smart systems can also 
enhance the security of pedestrians and cyclists. Due to their low noise level, electric 
cars pose a problem for cyclists and pedestrians to spot in low visibility conditions. 
Proper application of smart management of headlights enhances the visibility under 
the circumstances, and less likelihood of collisions takes place that increases urban 
road safety (Nourbakhshrezaei et al., 2023). Q-learning-based headlight managers 
have to be tested in extreme and real-world conditions involving low visibility, such 
as heavy rains or fog, and in places with much traffic. Even though the encouraging 
improvements were seen, there are still some issues that need to be solved. The Q-
learning-based systems will have to be tested in various countries, which have 
different climatic and geographical factors like excessive rainfall and fog or cities 
having heavy vehicle congestion. It is therefore important to ensure that these systems 
are robust so that their full potential can be realized in reducing risks associated with 
night-time and low-visibility driving. Public perception and driver acceptance of 
automated headlight control technologies are also essential, and awareness 
campaigns and educational efforts must be undertaken to build trust in these 
intelligent safety features (Waykole et al., 2021). 

In brief, the creation of intelligent headlight management systems based on Q-
learning structures is a giant step towards the reduction of driving risks as well as the 
improvement of the safety of electric vehicles. Such systems dynamically adapt to 
environmental conditions and optimize the use of energy, thus filling some of the 
critical needs for headlight setups by making night-time and low-visibility driving 
safer and more efficient. Future research should further refine these algorithms and 
validate their effectiveness in real-world scenarios to ensure widespread adoption and 
improved road safety for all (Chifu et al., 2024).  

3. Methodology  

3.1 Overview of Q-Learning 

Q-learning is a model-free reinforcement learning algorithm that enables agents to 
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learn optimal decision-making strategies in dynamic and uncertain environments. Its 
core mechanism involves iteratively updating a Q-value table (or function) based on 
the rewards observed from interactions with the environment. For dynamic headlight 
control in electric vehicles (EVs), Q-learning can adaptively optimize headlight 
parameters to enhance safety and energy efficiency. The key components of its 
implementation include: 

State Representation: States are defined based on environmental factors (e.g., 
ambient light levels, weather conditions) and vehicle dynamics (e.g., speed, steering 
angle). 

Action Selection: Actions involve controlling headlight parameters such as beam 
angle and intensity. 

Reward Design: The reward function incentivizes improved visibility, energy 
conservation, and driver comfort while penalizing excessive energy usage or unsafe 
conditions. 

The algorithm is summarized in the following pseudocode: 

 

Adaptive Q-Learning for Dynamic Headlight Control 

Initialize Q-table Q(s, a) with random values for all states s and actions a 

Set learning rate alpha, discount factor gamma, exploration rate epsilon 

Set maximum episodes N 

Define state representation: 

- States s based on environmental factors (e.g., light levels, weather) and vehicle 
dynamics (e.g., speed) 

Define actions a: 

- Actions that control headlight parameters (e.g., beam angle, intensity) 

For each episode from 1 to N: 

Initialize EV state s (environmental conditions, vehicle dynamics) 

Initialize total episode reward R = 0 

While not at terminal state: 

Choose action a using epsilon-greedy policy based on Q-table: 

- With probability epsilon, select a random action 

- Otherwise, select action with highest Q-value for current state s 

Execute action a on EV, adjust headlight parameters 

Observe reward r and new state’s 

Update Q-table: 

Q(s, a) ← Q(s, a) + alpha * [r + gamma * max(Q(s', a')) - Q(s, a)] 
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Update current state s to s' 

Accumulate total episode reward R += r 

End While 

Decrease epsilon (exploration rate) over episodes to encourage exploitation 

End For 

Evaluate Q-table for optimal policy: 

- Use Q-values to determine optimal headlight control actions based on current 
state 

With the algorithm explained, we next define the state and action spaces essential 
for implementing dynamic headlight control in EVs. 

 
Figure 2: Iterative Process of Adaptive Q-Learning for Dynamic Headlight Control. 

3.2 State and Action Spaces 

State Space: The state space represents real-time data from the environment and 
vehicle dynamics. Key variables include: 

Environmental factors: Ambient light intensity, weather conditions (e.g., fog, rain). 

Vehicle dynamics: Speed, steering angle, and road type (e.g., urban, highway). 

Justification: These parameters are chosen based on their significant influence on 
visibility and energy consumption, as evidenced in prior research on intelligent 
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lighting systems. 

Action Space: The action space consists of discrete actions to control headlight 
parameters, such as: 

Adjusting beam intensity (low, medium, high). 

Modifying beam angle (narrow, wide). 

Justification: These actions balance visibility improvement with energy efficiency. 

3.3 Reward Function 

The reward function is designed to balance competing objectives: 

𝒓 = 𝒘𝟏 ⋅ 𝒗𝒊𝒔𝒊𝒃𝒊𝒍𝒊𝒕𝒈𝒂𝒊𝒏 −𝒘𝟐 ⋅ 𝒆𝒏𝒆𝒓𝒈𝒚𝒄𝒐𝒔𝒕 −𝒘𝟑 ⋅ 𝒅𝒓𝒊𝒗𝒆𝒓_𝒅𝒊𝒔𝒄𝒐𝒎𝒇𝒐𝒓𝒕         (1)  

Visibility Gain: Rewards better illumination of the road and surroundings. 

Energy Cost: Penalizes excessive energy consumption. 

Driver Discomfort: Penalizes glare or inappropriate lighting conditions. 

Justification: The weights 𝑤1, 𝑤2, 𝑤3 are empirically tuned to strike a balance 
between safety, energy efficiency, and driver comfort, with priority given to safety in 
critical scenarios such as low-visibility conditions. 

3.4 Hyperparameter Tuning 

The following process was adopted for hyperparameter selection: 

Learning Rate (α): Initially set to 0.1 and reduced dynamically to ensure 
convergence. 

Discount Factor (γ): Set to 0.9 to balance immediate and long-term rewards. 

Exploration Rate (ϵ): Decreased linearly from 1.0 to 0.1 over episodes. 

Sensitivity Analysis: Conducted to assess the impact of hyperparameter variations 
on performance metrics. 

3.5 Simulation Environment 

The simulation environment was developed using Python and includes: 

Simulator: Custom-built environment modelling road geometry, traffic patterns, 
and weather conditions. 

Validation: Simulation results were validated against real-world data from test 
scenarios. 

Environment Details: Incorporates dynamic lighting conditions, vehicle movement, 
and realistic road scenarios. 

3.6 Validation and Generalization 

The system was validated through simulations with various configurations: 
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Limitations: Simulations lack real-world complexities such as sensor noise and 
unpredictable driver behaviour. 

Future Validation: Hardware-in-the-loop simulations and limited real-world 
testing are proposed for further validation. 

3.7 Discussion of Biases and Limitations 

Potential biases include the oversimplification of environmental factors and 
idealized sensor data. The Q-learning algorithm's performance depends on the reward 
function's quality and state-action representations' accuracy. To address these issues, 
future work will explore advanced simulation tools and real-world integration. 

3.8 Simulation Setup 

To evaluate the adaptive Q-learning system, simulations are conducted in a 
controlled environment, replicating real-world driving scenarios. The simulation 
setup includes: 

Parameters: define parameters such as environmental conditions (e.g., day/night 
cycles, weather variations) and vehicle characteristics (e.g., EV model specifications). 

Scenarios: create diverse scenarios (e.g., urban streets, highways, rural roads) to 
test the system's performance across different driving conditions. 

Metrics: establish evaluation metrics, including visibility metrics (e.g., visibility 
distance), energy efficiency metrics (e.g., power consumption), and safety metrics (e.g., 
glare reduction), to quantify the system's effectiveness. 

This methodology section systematically details the Q-learning adaptation, system 
architecture, and simulation setup, ensuring clarity and reproducibility of your 
experimental approach to optimizing headlight control for electric vehicles. 

 
Figure 3: Dynamic headlight control in EVs. 

In Figure 3, the adjustable distribution of headlight beams within the rope of the 
electric vehicles during driving is demonstrated using the advanced Q-learning control 
approach. The figure shows three headlight beam levels, including the centre headlight 
beam as a solid blue line, the left as a dashed orange line, and the right as a dashed 
green line. The optimal beam pattern is highlighted by shaded areas that represent the 
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most effective distribution of the beams in terms of beam polarization. For example, 
the yellow region corresponds to the left beam, which offers more intensity, while the 
cyan region corresponds to the right beam, which offers greater intensity. This 
representation demonstrates how adaptive control can optimize visibility by adjusting 
headlight intensity and direction based on real-time conditions. 

Figure 4 illustrates the learned Q-values for each action across different states in 
the Q-learning framework for dynamic headlight control in EVs. Each line represents 
the Q-values associated with a specific action (headlight configuration) as the state 
(environmental condition) varies. Higher Q-values indicate stronger associations 
between states and optimal actions, demonstrating the learning progress and 
adaptation of the adaptive Q-learning algorithm. 

 
Figure 4: Learned Q-Values for Each Action. 

Figure 5 depicts the training metrics over episodes during the Q-learning process 
for dynamic headlight control in EVs. The left subplot shows the total reward which is 
accumulated per episode about the effectiveness of the learned policy when it comes 
to achieving positive outcomes based on safety and energy efficiency, while the right 
subplot displays the total steps taken per episode; this indicates the balance 
maintained between exploration and exploitation across the training process. These 
metrics provide insights into the learning dynamics and convergence of the adaptive 
Q-learning algorithm in real-world scenarios. 

 
Figure 5:  Training Metrics Over Episodes 
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Figure 6 illustrates the convergence of cumulative rewards over training episodes 
in the Q-learning framework for dynamic headlight control in EVs. The plot shows how 
cumulative rewards accumulate as the adaptive Q-learning algorithm learns optimal 
headlight control policies. Higher cumulative rewards indicate better performance in 
achieving safety and energy efficiency objectives. This visualization demonstrates the 
effectiveness of the Q-learning approach in improving EV performance through 
dynamic headlight control. 

 
Figure 6: Reward Convergence in Q-Learning training. 

Figure 7 illustrates the trade-off between exploration and exploitation during the 
Q-learning training for dynamic headlight control in EVs. The plot shows how the 
exploration rate evolves over training episodes, representing the agent's strategy in 
balancing between exploring new headlight control actions and exploiting known 
optimal actions. A higher exploration rate indicates more exploration, leading to the 
potential discovery of better control policies. In comparison, a lower rate signifies 
increased exploitation of learned policies to maximize safety and energy efficiency in 
EVs. 

 
Figure 7: Exploration-Exploitation Trade-Off in Q-Learning. 
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Figure 8 illustrates the state space of the Q-values obtained from the adaptive Q-
learning algorithm for dynamic headlight control in EVs. Each cell in the heatmap 
represents a state-action pair, where the colour intensity indicates the magnitude of 
the Q-value. The high Q-values (depicted in a lighter colour) are states and actions in 
which the expected return is greater than; thus, the optimal policy has been shown 
effective in making headlight control decisions. In this case, the figure allows 
interpretation of the Q-values distribution in actions and states during the learning 
phase. 

 
Figure 8: State space heatmap of Q-Values. 

Figure 9 illustrates the distribution of rewards obtained during the Q-learning 
training process for dynamic headlight control in EVs. The x-axis shows the range of 
values for the reward obtained, while the y-axis shows the number of times a reward 
bin is attained. This visual image assists in understanding the distribution and spread 
of the rewards earned by the adaptive Q learning algorithm and, interestingly, the role 
played by different headlight control strategies in increasing EVs' safety and energy 
efficiency. 
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Figure 9:  Distribution of Rewards in Q-Learning Training. 

3.9 Validation and Generalization Improvements 

3.9.1 Supplementing Simulation Results with Hardware-in-the-Loop 
Testing 

To boost validation, it is suggested that hardware in the loop (HIL) testing be 
included in future work. HIL tests assist presenters in applying their theoretical work 
in simulations, expecting it to be deployed in reality. Such as:   

Control of an electric vehicle's headlight system could be embedded in a 
microcontroller or an ECU that uses a Q-learning algorithm for the same purpose. 

A computer-aided simulator can simulate in real time the electric vehicle's 
exposure to changing climate or traffic barrage.  

This method helps test the decisions and the level of system responsiveness and 
ensures excellent reliability before it is installed in real systems.  

3.9.2 The Need for Real-life Testing to Validate Effectiveness and 
Robustness of the System 

Real-life testing appears to be the final or constant step towards validating systems 
consisting of simulators by implementing the system in real life where various 
conditions that can’t or one are predefined exist. Key steps include:  

Installing the dynamic headlight control system onto an electric car with 
environmental sensing devices.  

Carrying out tests in various testing environments, testing the weather and 
saturation of traffic on the system in terms of safety, energy efficiency, and driver 
holonomic control.  



Pitchaya Jamjuntr, Chanchai Techawatcharapaikul, Pannee Suanpang/ Oper. Res. Eng. Sci. Theor. 

Appl. 7(3)2024 86-123 

109 

Evaluating the differences from those derived from simulations and making further 
modifications to the model. 

3.9.3 Constraints of the Simulation Environment 

On the one hand, the simulation environment aims to be all-inclusive, controlled 
and replicable for preliminary investigations. However, it is critical to highlight the 
following limitations of this approach: 

Simplifications: It can be argued that simulated conditions are idealized as they do 
not incorporate nuances like sensor signal noise and different road surfaces or 
realistic non-structured environments. 

Reduced Variation: The many driving simulations might be highly varied, but do 
not simulate the full extent of many everyday driving practices. 

Parameters Assumptions: The only parameters that are modelled quasi 
stochastically are those regarding the weather and visibility, which are quite 
frequently deterministic and render the approximation of the real world’s interactions 
quite useless. 

3.9.4 Improving in Generalizability 

To make the model more general: 

Broaden the spectrum of modelled scenarios by incorporating more subtle 
elements, such as sudden changes in lighting occurring while passing through tunnels 
or out of them, sudden variations in weather conditions, and even the effects of 
another vehicle's lights. 

Represent elements of external conditions’ uncertainty in terms of probabilistic 
models rather than joint distributions across different factors. 

Test the model against benchmarks based on datasets collected during actual 
driving trials, such as publicly available datasets such as KITTI or nuScenes, that would 
facilitate assessing the efficacy of the simulation and its predictions during an actual 
driving test. 

3.9.5 Figures Integration and Analysis 

The figures presented (Figures 3-9) include dynamic control, which allows for 
convergence of the Q values. They also engage in and out of the frogs during the entire 
simulation and enhance the learned Q-value metrics. These figures constitute an 
integral part of the broad perspective of the simulation process and outcomes, such as 
clutched lock devices and earned rewards. 

Illustrate the Q learning strategies and depict the framework learning processes. 

Emphasize areas in the simulation environment that could be improved to enhance 
its generalizability (e.g., Fig 6 and 9 present trends that may differ under actual 
conditions). 

At the same time, by adding HIL and real-world testing results and limiting the 
simulation environment, the strength and transferability of this adaptive Q-learning 
control system for dynamic headlight control can be enhanced considerably. Future 
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work will incorporate these methodologies to further substantiate and strengthen the 
developed system. 

4. Results  

4.1 Performance Metrics 

The adaptive Q-learning system for headlight control in electric vehicles (EVs) 
demonstrates significant improvements across key performance metrics. 

Figure 10 illustrates the improvement in visibility distance achieved by different 
headlight control methods in EVs. The adaptive Q-learning system demonstrates the 
highest visibility distance, significantly outperforming rule-based systems, static 
control approaches, and adaptive control approaches. This indicates the effectiveness 
of Q-learning in optimizing headlight parameters for enhanced visibility under varying 
environmental conditions. 

 
Figure 10: Improvement in Visibility Distance Under Varying Environmental Conditions. 

Figure 11 illustrates a bar graph comparing the energy efficiency of different 
headlight control methods in EVs. The adaptive Q-learning system achieves the lowest 
power consumption, indicating improved energy efficiency compared to rule-based, 
static, and adaptive control approaches. The Q-learning system's ability to dynamically 
adjust headlight parameters helps maintain optimal visibility while reducing 
unnecessary power usage, highlighting its effectiveness in balancing safety and energy 
conservation. 
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Figure 11: Energy efficiency comparison. 

4.2 Quantitative Analysis with Statistical Significance 

To evaluate the robustness of the results, we performed statistical significance 
testing using ANOVA (Analysis of Variance) to compare performance metrics across 
different headlight control methods (rule-based, static, adaptive, and Q-learning-
based). Error bars representing 95% confidence intervals are included in Figures 10 
and 11 to account for variability in the results. The comparison of improvement in 
terms of different control methods are summarized in Table 3.  

Visibility Distance: Figure 10 illustrates the improvement in visibility distance 
achieved by different methods. The Q-learning system demonstrates statistically 
significant improvements compared to other approaches (p<0.01). 

Energy Efficiency: Figure 11 compares energy efficiency, showing that the Q-
learning system achieves the lowest power consumption while maintaining optimal 
visibility. The statistical test confirmed that the observed differences are significant 
(p<0.05). 

Table 3: Comparison of Improvements Across Different Control Methods 
Method Average 

Visibility 
Distance (m) 

Standard 
Deviation 

Average Power 
Consumption 

(W) 

Standard 
Deviation 

(W) 

Improvemen
t (%) 

Visibility 

Improvemen
t (%) 

Efficiency 
Rule-Based 

Control 
75 5 120 10 - - 

Static 
Control 

85 6 115 8 +13% +4% 

Adaptive 
Control 

90 4 110 7 +20% +8% 

Q-Learning 
Control 

110 3 95 5 +47% +21% 
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4.3 Discussion of Results 

4.3.1 Trends 

Visibility distance: The Q-Learning-based system has the best visibility distance 
among other systems under all tested conditions, thus showing its ability to perform 
in changing conditions. 

Power saving: The system sustains substantial reductions in visibility and 
maintains power consumption at the bare minimum, thus achieving a balance of safety 
and economy. 

4.3.2 Outliers 

The Q-alert system exhibits some slight differences in visibility for safety-critical 
areas with extreme fog, which are promising opportunities for algorithm 
improvement in severe micro visibility environments. Energy efficiency decreased 
slightly at times due to very fast state changes, which was probably due to training 
exploration. 

4.3.3 Potential Sources of Error 

Sensor noise: Some environmental sensors used in the detection stage can corrupt 
state estimation during AI interactions. 

Simulation assumptions: Ideal weather and traffic scenarios do not always 
translate to the real world, reducing the model's broad applicability. 

4.3.4 Figures with Error Bars 

Figure 10 Bar graph for average visibility distance and measurement errors to 
represent 95% confidence of each method. Figure 11: The figure presents the methods 
in terms of saving energy and has error bars showing the energy level used across the 
tests. 

4.4 Statistical Insights 

In addition, the differences' results were also further investigated using the 
statistical metric effect size `to measure the practical significance of the differences. 
The effect size of the Q-learning improved visibility distance significantly, and this was 
observed to be a large effect size d=2.1, hinting at its broad practical contributions. 

Table 4: Summary Table of Key Findings 
Metric Q-Learning (Mean ± 

SD) 
Best Comparator 

(Mean ± SD) 
Improvement 

(%) 
Visibility Distance (m) 110 ± 3 90 ± 4 +22% 
Energy Efficiency (W) 95 ± 5 110 ± 7 +13% 

4.5 Future Work 

To enhance these results further:  

 Augment the real-world data to justify and enhance conclusions obtained 
from the simulations.  

 Employ sophisticated environmental models to include special cases, in 
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particular severe weather situations. 

5. Discussion  

5.1 Discussion of the Result  

The findings from this study highlight several key implications for applying 
adaptive Q-learning in dynamic headlight control for EVs. Firstly, the adaptive Q-
learning system significantly enhances night-time driving safety by optimizing 
headlight beam patterns based on real-time sensor inputs. This enhancement achieves 
a longer visibility range, and drivers can detect obstacles and ramp conditions more 
efficiently, even during low light conditions. Secondly, a critical facet of the systems’ 
design is their capacity for real-time adjustment to changing conditions, such as 
ambient light level and atmospheric conditions, which means EVs will always operate 
at optimal illumination levels, thus enhancing safety by minimizing the chances of 
accidents without producing glare to oncoming vehicles, which is very important for 
safety on the roads in general. Thirdly, with an adaptive Q-learning system, energy 
consumption has decreased considerably compared to previous auto headlight 
adjustment technologies. The system does not squander energy in vain, avoiding 
unnecessary costs by illuminating only those areas that require attention (Chifu et al., 
2024).  

The work on strategies and fundamentals was among the first to attempt a new 
approach in cross-combining strategies/models. The limitations include a lack of test 
data during reconstruction, a lack of real-time decomposition analysis, the inability to 
build 3D models, and the inability to generate STL files. Many opportunities to improve 
the model are expected to become available shortly, but for now, the results of the new 
strategy outlined in this paper look promising and connect smart glancing to policy 
and strategy allocation. Insufficient time is an additional obstacle; building such a 
model takes a lot longer than was provided for the exercise. In this particular field, we 
make contributions toward boosting developing countries since this theory has an 
abstract view of resources. Several reasons can be presented why the experimentation 
in fresh fields, in out-of-the-box thinking, is sparse at best. It will discuss from a reverse 
perspective, attempting to provide propositions to existing theory through proof and 
application. Although they highlight important development sectors, live animal 
exports offer new markets and resources rather than substituting existing practices. 
The practical contribution of the study is that it highlights the importance of informing 
target farmers (Chifu et al., 2024; Vaidya & Mouftah, 2020). 

Even with the aforementioned reasons for optimism, a number of important 
drawbacks of the proposed approach still need to be solved in order to increase its 
applicability and performance:  

Modelling Complex Driving Conditions: One of the most difficult aspects is the 
creation of reliable simulation models for the entire stacked domain, including but not 
limited to various urban environments, highways, and bad weather conditions. Large 
datasets that are coupled with sophisticated simulation tools possess critical 
importance in terms of performance, supporting the Q-learning algorithm with 
adequate training. The limited representation of complicated scenarios during 
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training can result performance being less than ideal in actual conditions (Jamjuntr et 
al., 2024). 

Dependence on Sensor Data: Robust sensor data would, thus, be a prerequisite for 
the integration system's effective functioning. Sensor input, if afflicted with errors, 
noise, or latency, might induce the algorithm to make excessive adjustments, risking 
the endeavour’s security. At this time, improving sensor accuracy and latency are 
among the low-hanging fruit (Song et al., 2024). 

Computational Complexity: Restricted on-board computing functionalities within 
EVs, coupled with high computational and memory intensive nature of Q-learning 
algorithm, could pose a significant challenge to the real-time application of the 
algorithm. There is a great need to exercise efficient algorithm formulation and 
improve the related hardware technology in order to resolve this limitation and avoid 
the system from computing in a delayed manner (Qiu et al., 2023). 

Increasing Training Time While equally critical, the time invested in training the Q-
learning algorithm has to be high from the preliminary stages. This will assist in 
managing the exploration and exploitation parameters efficiently so as not to overfit 
the data which can be detrimental since it would make the algorithm unable to 
generalize on different driving setups (Chifu et al., 2024). Possible Sources of Error • 
Sensor Noise and Latency: Deviation in the accuracy of sensors might result in some 
delays when or changes not being made, hence the system may not be fully functional.  

Simplified Environmental Models: Application of simplified simulation schemes 
should encompass real world features otherwise the system will not be able to 
generalize on some new situations.  

 Algorithmic Overfitting: When training conditions are favoured to some excessive 
picture of the overall driving conditions, the trained controller might not perform well 
under a wider range of situations. 

This efficiency enables great extension to electricity-powered car ranges, one of the 
hooks for consumers, and general acceptance of EVs. This also appeals to the broader 
sustainability agenda within the design of the EV as a lower energy carbon footprint 
and a greater effective utilization of electrical energy is favourable (Alqahtani et al., 
2022; Vaidya & Mouftah, 2020). All in all, the application of adaptive Q-learning in the 
control of the headlight system is beneficial for electric vehicles in terms of their 
performance, reliability, and efficiency in multiple driving environments. This 
optimization makes the system resilient to changes in driving conditions. The 
headlight system can learn and improve from the conditions during operation based 
on the nature of the Q-learning algorithm. Because of this feature, it can be expected 
that the headlight system will perform well and efficiently throughout the vehicle's 
life, leading to improved and more economical driving (Vashishtha et al., 2024). 
Accurately modelling and simulating diverse driving conditions, including urban 
streets, highways, and adverse weather, poses significant challenges in training the Q-
learning algorithm effectively. This complexity necessitates robust datasets and 
sophisticated tools to simulate such environments to help the Q-learning agent learn 
the optimal policy (Jamjuntr et al., 2024).  

For Q-learning agents to make real-time decisions, data received from sensors must 
be accurate and sufficient to increase reliance on sensor technologies. If present, 
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sensor data errors or latencies can be detrimental to the system as they may impede 
headlights from being adequately adjusted and threaten outward safety (Song et al., 
2024). The second reason is that Q-learning algorithms are known to have high 
computational complexity, which requires a large amount of processing and memory 
resources and, therefore, may not be suitable for real-time applications in EV systems 
that disappoint computing capabilities. Such computational requirements bring about 
the need to design efficient algorithms and improve hardware performance so that 
adaptive Q-learning can be applied to control headlights in real-time situations. 
However, the time to fine-tune the system is extended. The Q-Learning algorithm has 
a long training time in the initial stages and requires high computational resources, 
hence the driving experts' support (Chifu et al., 2024). During the training phases of 
the algorithm, intense but not extreme emphasis should be placed on exploration and 
exploitation to avoid overfitting into a uniquely narrow loop while achieving 
generalization over many different driving situations. To this end, these solutions 
must be addressed to enable commercial use of adaptive Q-learning logic for dynamic 
control of vehicle headlights. (Qiu et al., 2023).  

6. Implications of the Findings 

The usefulness of adaptive Q-learning for controlling headlights dynamically shows 
improvement in the safety and energy consumption of EVs. The ability to vary the 
headlight parameters in real time depending on the prevailing environmental 
conditions turns out to be one of the valuable contributions and innovations of this 
system for the design of future Evs. Moreover, the decline in energy requirements 
furthers the sustainability goal, making electric vehicles more attractive to green 
consumers. Directions for Future Investigation 

To overcome the limitations established and to improve the system further the 
future researchers may seek to consider the following areas: 

Expanded Discount Simulation Environments: Create broader and more credible 
simulation models that capture various climatic, road and traffic conditions to enhance 
the system’s ability to be generalized. 

Coupling with Diverse Sensor Systems: The project aims to examine the coupling 
of modern sensor systems, including LiDAR and other advanced image processing 
systems, to improve data quality and decrease the time lag. 

Appropriate Algorithm Development: Able to apply resource-constraint algorithms 
that are low cost and, therefore, require fewer resources to run so that they can be 
used in real time on EVs with limited resources. 

Transfer Learning and Adaptation: Use transfer learning methods to cut down the 
time consumed during training and allow the system to adapt to new places or 
conditions without many retraining sessions. 

Field Testing and Real-World Validation: Conduct extensive field tests to examine 
system effectiveness in real life, identify aspects that may still need correction, and 
check whether the product is ready for mass production. 

Addressing these limitations and considering possible future research directions 
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will greatly improve the usability and recovery of adaptive Q-learning for dynamic 
headlight control of electric vehicles. 

7. Future Research  

Future research directions include conducting real-world validation through 
extensive field tests to address these challenges and enhance the effectiveness of 
dynamic headlight control using adaptive Q-learning. These tests hold significance in 
verifying the simulation outcomes and evaluating the system's performance in more 
challenging operational scenarios with traffic, environmental, and road topography 
variations. Moreover, integrating cutting-edge sensor technologies, including LiDAR, 
sophisticated imaging sensors, and high-resolution cameras, can improve the 
robustness of the model inputs used in the Q-learning algorithm. This provides better 
and more effective headlight control adjustment, improving visibility and effective 
energy use (Kumar et al., 2024). In addition, optimization of enhanced Q-learning or a 
combination of reinforcement learning models suitable for EV applications will solve 
the issues of computational efficiency and scalability (Jamjuntr et al., 2024). 
Considering the optimization, these algorithms will enable the system to work 
efficiently in a low-power onboard EV processor presence. Additionally, extending 
synergies to autonomous driving technologies allows for a cross-functional system in 
which adaptive headlight control integrates with other autonomous driving systems, 
increasing the safety and efficacy of the vehicle even further. By focusing on these 
future directions, the researchers will be able to improve adaptive Q-learning-based 
systems for dynamic headlight control substantially, which would enhance the safety, 
efficiency and reliability of electric vehicles in the future (Mazzi et al., 2024).  

8. Conclusion 

The proposed approach, adaptive Q-learning for dynamic headlight control for 
electric vehicles, uses reinforcement learning in an optimal way for enhancing safety 
and efficiency through the real-time adjustment of headlight beam patterns based on 
sensor data and vehicle dynamics. The key benefits will be improved safety at night 
for driving, reduced glare, extended range of travel by EV, and lower carbon footprints 
that align with environmental standards, thus leading to greater comfort and 
confidence for the driver by tuning the driving experience to conditions. This 
adaptability is a new milestone in smart vehicle systems, bringing about advancement 
in autonomous driving and vehicle-to-infrastructure communication. However, there 
is still the challenge of scaling this system for diverse environments, improving 
computational efficiency, and sensor accuracy and low latency. The future research 
may integrate adaptive Q-learning with other AI technologies to enhance compatibility 
with the navigation and energy management systems and, thus, the whole smart 
vehicle ecosystem. Adaptive Q-learning represents a significant step toward bringing 
safer, more efficient, and environmentally friendly transportation, with different 
standards set into smart automotive systems, thus driving an innovation in the EV 
industry. 
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