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Abstract. The paper presents the actual problem of increasing the efficiency of empty 
railcars management in rail nodes. The problem lies in need to consider the several 
constraints. Firstly, railcars’ owners are willing to load their rolling stock by specific 
goods for the given directions (consumers). Secondly, it is necessary to consider 
schedule and formation of trains between railway stations of the node when we 
developing the routes for movement of the empty railcars. Final constraint is based on 
compliance with the schedule of the railcars loading in the transport node. We propose 
the minimum of total time costs that railcar has spent in the specific transport node as 
the objective function. This problem is being sophisticated in terms of increased 
irregularity of railcar traffic flows, and as a result, it increases the loading factor of the 
individual railway stations in the transport node. Hence, it creates an uneven loading 
factor of railway stations in the node. In order to optimally manage empty railcars at 
rail nodes, both the mathematical model and its solving method are presented. One of 
the distinctive features of the developed model lies in the application of a fuzzy logic 
method to evaluate online the loading factor of railway stations in the rail node. 
Moreover, this model takes into account these evaluations by optimizing the 
distribution of empty railcars at the loading points. The present study puts forward the 
method and algorithm of the developed mathematical model for empty railcars 
management. They could additionally take into account the possibility to include empty 
railcars groups in the composition of trains moving on schedule within large railway 
nodes or in systems of railway transport at large industrial enterprises. The proposed 
model significantly reduces the complexity of operational planning of dispatchers for 
distributing the empty railcar traffic volumes. Furthermore, the developed model 
minimizes the total handling time of railcars in rail nodes and ensures the timely supply 
of empty railcars to the loading points. 

Key words: rail transport, railcar traffic volume, empty railcars, station loading, train 
schedule, mathematical model, linear programming, fuzzy-logic. 
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1 Introduction 

The railways in the countries of the former Soviet Union heritage the complex 
railway transport systems of large industrial enterprises, whose width of the rail 
gauge equals 1520 mm. Currently, the transport system is faced with a dramatic 
increase in railcar handling costs. As a result of the uncoordinated interaction 
between the mainline and the industrial rail transport, the total annual losses of a 
single metallurgical enterprise could reach up to 1.5 billion rubles ($45 million US 
dollars) (Osintsev and Rakhmangulov, 2013; Rakhmangulov et al. 2016). 

An increase in these losses mainly occurs due to the increased complexity of the 
operational planning and management of railcar traffic in the railway transport 
node. The following factors might be the source of this intricacy: 

• the growth and multiplicity of rail freight traffic in Russia and the CIS; 
• a plenty of new private railcar owners; 
• an increase in uneven railcar traffic; 
• frequent and significant workload changes in railway stations and spans 

(Rakhmangulov, 2014). 

According to these conditions, a possible way to solve this issue might be linked 
to the modernization of the freight traffic flow system in order to reduce the total 
railcar dead time in the transport nodes. Moreover, a lack of promptness with 
respect to the delivery of railcars is the main concern the railcar owner is faced with, 
which significantly raises their overpayment. This issue should, therefore, be 
considered as well.  

The changes caused by the structural reform of the Federal railway transport 
have a significant impact on the functioning of the transport service systems 
(Rakhmangulov et al. 2014). The main factor of this reform is the transfer of freight 
railcars to the operating companies’ properties. As a result, by the beginning of 2015, 
the proportion of private railcars increased up to 100%. At the same time, there is an 
outstripping growth of the value of the freight traffic flow in relation to the rail 
transport volume. This correlation indicates the irrational use of railcars. 

The disadvantages of such a type of changes are as follows: 
• a rise in empty railcar transit; 
• a decrease in the reserves of the throughput and the capacity of railway 

stations and the span because of the enlargement of the effective railcar 
time usage; 

• an increase in the new rolling stock necessity (Borodin and Sotnikov, 
2011; Rakhmangulov et al. 2014). 

The rail transport analysis of industrial enterprises depicts an increase in the 
railcar dead time by 20% on average during the last seven years (Kornilov and 
Varzhina, 2015). 

As is shown in the Russian and foreign experience, a reduction in railcar dead 
time in industrial transport systems (ITSs) is achieved as a result of the variety of the 
accounting parameters of railcar volumes based on the methods for managing railcar 
traffic volumes in intelligent transport systems. These methods include linear and 
nonlinear optimization, dynamic optimization, simulation modelling (Lind, 2000; 
Berezhnaya and Berezhnoy, 2006; Lesin, 2011). 
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Based on the operational control methods for railcar exploitation, the problem of 
the acceleration of the railcar transit time in transport systems has been discussed in 
North America and in Europe (Clausen and Voll, 2013; Clausen and Rotmann, 2014). 
European researchers emphasized the mathematical and heuristic approaches to 
solving the optimization problems of the railcar traffic flow in rail transport nodes.  

The discrete mathematical models and algorithms, their implementation and the 
development strategy of the railcar traffic flow planning within various speeds for a 
small transport network are proposed in the late 1990s (Carey and Lockwood, 1995; 
Dorfman and Medanic, 2004). Different ways were proposed at that time: 

• the adjustment of the train traffic route on the basis of increasing the 
accuracy of a reaction to the high dynamics of the train schedule parameters 
(Pellegrini et al., 2014); 

• the heuristic approaches to the railcar traffic flow management while 
simultaneously optimizing the solving of the problems of their movement in the 
railway transport node (Fugenschuh et al. 2008); 

• an analysis of the empty railcar management methods (Spieckermann and 
Vosz, 1995). 

The previous studies (Jha et al. 2008) are focused on the practical application of 
the modern heuristic methods based on the solution to the multi-product 
transportation problem. Later, these techniques were developed (Kauppi et al. 2006; 
D'Ariano, 2008) and, consequently, the optimization of the transport issue was 
described. The result of solving this issue implies the minimization of the costs of the 
private railcar movement in transport systems. 

The practical application of the operative management methods for industrial 
transport reflects in the implementation of the automated systems of the 
management of the railway transportation process. The researcher (Hailes, 2006; 
Kozlov, 2007) described how the methods were formed and how computerized 
systems were developed for the management of the railcar traffic flow in rail 
transport nodes and the ITS. 

However, the mathematical models currently used in intelligent rail transport 
systems do not sufficiently take into account the complex and variable structure of 
railcar traffic volumes. Furthermore, these models do not consider the uneven 
workload of railway stations in the railway transport node. It can be explained that, 
due to the railcar owners’ decisions, restrictions on their use of railcars often change. 
As a rule, such changes occur once at the beginning of the day (an estimated period). 
This feature allows us to consider the problem of the optimal empty railcar 
distribution in transport nodes as a static linear programming problem and also to 
modify it to the transport problem with additional constraints (Rakhmangulov et al. 
2016). 

According to the well-known models (Spieckermann and Vosz, 1995; Shenfeld et 
al. 2012), constraints on the supply of certain empty railcars by certain consignors in 
the railway transport node were previously implemented. However, delays in the 
supply of empty railcars for the workload associated with the inclusion of these 
railcars in the size of the trains moving between railway transport node stations 
according to the fixed or flexible schedule are not taken into account by these 



Rakhmangulov et al./Oper. Res. Eng. Sci. Theor. Appl. 2 (1) (2019) 51-71 

 

54 
 

models. Such a flexible schedule can be formed in an operational mode by changing 
the train routes in the railway transport node and by choosing the stations with a 
low level of workload (a large amount of the capacity reserve) for the transportation 
of these types of trains.  

The solution to the problem of the optimal control of empty railcars in the railway 
transport node, together with the abovementioned limitations, requires that 
operational data should be used by means of modern intelligent transport systems in 
railway transport (Kozlov et al. 2011; Crainic and Laporte, 1997). 

2 A Mathematical Model of the Optimal Distribution of Empty Railcars 
in the Railway Transport Node  

2.1. The Statement of the Operating Problem of Empty Railcar Flows  

The effectiveness of the distribution of empty railroad cars in the railway 
transport node was deeply discussed in a previous study (Rakhmangulov et al. 
2014). However, the disadvantage of this paper is the absence of real station 
workload data. Hence, the current research study presents a promising model 
combining the operating work level of railway stations and the allocation of empty 
railcars.  

The objective function of the model minimizes the railcar-hours cost during the 
period of the storage of empty railroad cars in the railway transport node to the 
loading places. 

1 1 1

min,
L M N

kij kij

k i j

C x
= = =

 →  (1) 

where C is the amount of the transit time from the railway station i to the railway 
station j of the empty railcars belonging to the group k (depending on their type 
and/or their belonging to a certain railcar owner); x is the number of the railcars 
belonging to the group k and included in the freight railcars flow (a block of railcars) 
between the stations i and j; L is the number of the empty railcar groups in the 
railway node at the beginning of the base period; M is the number of the railway 
stations in the railway node; N is the number of the loading points of the empty 
railcars in the railway node. 

The following constraints should be satisfied during the planning of the 
distribution of empty railcars in the railway transport node: 

- the distribution of all empty railcars situated in the railway node at the 
beginning of the base period: 

1 1

, 1,2, , ,
M N

ki kj k

i j

A B A k L
= =

= = =   (2) 
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where ,ki kjA B are the number of the railcars belonging to the group k and, 

respectively, located at the departure stations (i) and at the empty railcar loading 
points (j). 

- taking into consideration all of the empty railcars belonging to a certain group 
with respect to the railcar traffic flows in the railway transport node: 

1 1

, 1,2, .
M N

kij k

i j

x A k L
= =

= =  (3) 

- always a positive value of the railcar traffic flows in the railway transport 
node: 

0, 1,2, ; 1,2, ; 1,2, .kijx k L i M j N = = =  (4) 

- taking into consideration the empty railcar block with respect to their addition 
to the train size departing from the railway station soon: 

1 ( ) ,ir i i i irt p t t−  +   (5) 

where r is the sequence train number in the train departure schedule of the 
railway station i. In this case, the index i denotes any station of the railway transport 
node where at the current moment of time the empty railcars included in the train r 

are located; irt is the departure time of the train r from the railway station i; ip is the 

potential of the ith TOR (Table of an Optimal Route) of the transport network 
describing the scheme of the railway transport node tracks, or the total time of 

railcar transit on their route from the starting route station to the ith station; irt  is the 

dead time of the railcars at the station i; i  is the station workload factor (the 

calculation approach is presented in Section 2.2). 
- taking into consideration the minimum transit time of the empty railcars 

inside the railway transport node (according to Formula (5), the dead time of the 
empty railcars before they can be added to the soonest train and the transit delay 
due to the operating work level of the railroad station should be taken into account) 

, 1,2, ; 1,2, ,
ij i ijp p p i M j N−  = =  (6) 

where jp is the potential of the jth TOR of the transport network, for which the ith 

peak is the preceding one of the empty railcar route; ijp is the potential of the 

transport network arc connecting the peaks i and j, or the amount of the transit time 
of the empty railcars on the railway track which directly connects the stations i and j. 

- an equilibrium between the potential (estimation) of the TOR peak of the 
transport network (j) and the summation of the potential of the preceding TOR peak 
(i) and the potential of the transport network arc connecting these peaks: 
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ijij ppp
i
+=  (7) 

- the interconnection of the transport network peaks – this condition is used to 
implement Formula (6) for the purpose of the verification of all the transport 
network peaks for which the station i is the preceding station. Transport network 
peaks might be checked via the algorithm presented in the third section of this study. 

, 1,2, ; 1,2, ,ji i M j N= = =  (8) 

where
j  is the index of the TOR peak (the railway station) which precedes the jth 

station on the way of the empty railcars in the railway transport node, i.e.: 

 , , ,ij ii S i j = . 

- a constraint on the number of the railcars in the train r to which the empty 

railcars belonging to the railcar flow kijх  and being at the station i can be added:  

,kij irх Q  (9) 

where irQ is the maximum train r size. 

In Chapter 3, both the approach to and the example of solving a transport 
problem, specifically being the issue of the optimization of the distribution of empty 
railcars in the railway transport node. 

2.2 The Assessment of the Throughput and the Handling Capacity of the 
Railway Station – A Fuzzy Logic Approach 

Basically, the statement of the problem of the evaluation of the effectiveness of 
the throughput and the handling capacity of a railway station might be described as 
follows. There are many technological railway stations, each characterized by a 

reserve of the throughput and the handling capacity  mi aaaaА ,...,,..., 21= . In 

turn, each station is characterized by a set of the indicators that on their own part 
exert an influence on the throughput and the handling capacity 

reserves  nj KKKKK ,...,,...,, 21= . Thus, the station with the largest throughput 

and the handling capacity reserve should be chosen, i.e. the variant ia from the set А . 

Table 1 indicates the four-factor groups (Rakhmangulov et al. 2016) used in order 
to estimate the work of the railway station K . In the previous study (Rakhmangulov 
and Osintsev, 2011), each factor was found to have its own functions, qualitatively 
determining the influence of the ratio on the amount of the throughput and the 
handling capacity reserve at the railway station. 
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Table 1. The factors and indicators of the operational assessment of the railway 
station workload 

Factor 
groups ID 

Factor groups feature Assessment indices of the railway station 

Technical 
factors 
group 

 

The characterization of the 
technical equipment of the 
station – railway tracks 
development, shunting and 
cargo facilities  
 
 

The number of the automatic switches 
The number of the train locomotives 
Type of the shunting locomotives 
The blocking type in the railway spans 
The incline of the station railway tracks 
The presence of the technical inspection points 
of the railcars at the station  
The number of the railroad spans at the station 
The number of the loading areas 
The presence of the weighing facilities at the 
station 
The presence of the weighing facilities in the 
loading areas  

Technolog
ical factors 

group 
 

The characterization of the 
amount and complexity of 
the technological 
operations currently being 
performed at the station; 
the characterization of the 
availability of the railway 
track elements  
 

The presence of shunting work in the railway 
span 
The presence of shunting work in the loading 
areas 
Exceeding the limit of the dead time during the 
loading operations 
Uneven goods arrival from the external 
network 
Uneven products loading  
The reconstruction of the railway station  
The reconstruction of the workshop  
The time of the day 
Visibility  
Air temperature 
The number of the railcars  
The availability of shunting locomotives 

Subjective 
factors 
group 

The characterization of the 
complexity of the 
operational management of 
the railway station under 
certain conditions: 
depending on the level of 
organization, 
informatization, 
automatization, the 
weather and climatic 
conditions, the time of the 
day, etc. 
 
 

The sufficiency of the shunting facilities at the 
station 
The sufficiency of the receiving/shipping 
railway tracks at the station 
The sufficiency of the receiving/shipping 
railway tracks capacity at the station 
A sufficient number of the exits at the station 
The actual capacity of each railway span 
The level of the technical development and 
capacity of the loading areas 
The professional competence of the operating 
personnel 
The presence of unfavorable routes at the 
station 
The presence of the corner railway tracks at the 
station 

Employees 
factors 
group  

The characterization of the 
professional competence of 
the railway station 
management 

The years of age of the railway station 
managers  
The railway station managers’ education 
The railway station managers’ work experience 
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As is shown in Figure 1 below, in order to estimate the reserve of the throughput 
and the handling capacity of the station, the methods of the fuzzy set theory can be 
applied (Andreichikov and Andreichikova, 2000; Harris, 2006; Rakhmangulov and 
Osintsev, 2011).  

 Preparing a list of indicators in order to evaluate the railway station 
Кi, i=1…n 

Determining the number of the railway stations aj, j=1…m 

Determining the actual values of the evaluation indicators for the railway 
station Ni(fact) i=1…n  

Are the actual values of all the indicators 
determined (i=n)? 

 

Next indicator 
(i=i+1) 

Determining the membership function values for each indicator 
Зi,j i=1…n, j=1…m 

Are all the values of the membership 
functions defined 

(i=n, j=m)?  

 

Next function 
(i=i+1; 
j=j+1) 

Forming fuzzy set methods in order to estimate the reserve of the throughput and 
the handling capacity of the station μki (a) 

Selecting the methods of the fuzzy sets theory (the method of the maximin 
convolution; absolute solutions; the main parameter; a compromise solution; the 

benchmark test comparison б, etc.) 

No 

No 

Yes 

Yes 

Selecting the station with the maximum reserve of the throughput and the 
handling capacity ia from the set А  

Determining the weight indicators i   

Figure 1. The algorithm for the estimation of the reserve of the throughput 

and the handling capacity of the station. 

The numerical values of the reserve of the throughput and the handling capacity 

of stations are evaluated by the load factor of the station ( i ) (Rakhmangulov and 

Osintsev, 2011). These values can be used to calculate the cost of the railcar hours 
during the passing of empty railcar flows on their routes.  
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3 The Calculation of the Plan for the Optimal Distribution of Empty 
Railcars in the Railway Transport Node. The Method, the Algorithm and 
an Example. 

In previous studies (Rakhmangulov et al. 2014), several methods for the optimal 
distribution of empty railcars in the railway transport node were discussed. The 
practical implementation of the proposed model consists of the seven stages. 

Stage 1 is associated with the preparation of the initial data characterizing the 
technical and technological indicators of the conditions of the transport network, the 
number of different railcar groups at the stations (Figure 2) and the train timetable 
inside the railway transport node (Table 2).  

The railcar handling time at the stations iit   is calculated based on the reserves 

of the throughput and the handling capacity of each station and the railcar handling 
time at a single station. 

 

 

 

Peaks of the transport network (stations, loading areas) which are conventionally numbered with 
prime numbers; 

kiA  is the number of the railcars of each group k which are located at each railway station i  of the 

railway transport node, railcars; 

kjB  is the exigency of the empty railcars at each j th station or at the loading point, railcars; 

it  is the average handling time of transit railcars at the j th station, min.; 

i  is the coefficient of the station workload; 

ijt  is the train movement time between the neighboring stations of the railway transport node, min.; 

irt  is the train timetable inside the railway transport node. The moments of the train departures for each 

r th train at the railway station, min.; 

irQ  is the maximum number of the railcars that can be included in the train size r  which is supposed to 

be sent according to the schedule from the station i  at a moment of time irt , railcars. 

kiA  

kjB  it  

i  ijt  

Figure 2. An example of a transport network scheme with the initial data in order to 

calculate the optimal plan for the distribution of empty railcars in the railway 

transport node 
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Table 2. The train timetable between the stations inside the railway transport node 

 
j  1it  1iQ  2it  2iQ  3it  3iQ  4it  4iQ  5it  5iQ  

1 
2 
2 
3 
2 
4 
1 
8 
8 
4 
4 
3 
3 
5 
4 
9 
8 
9 
5 
9 
3 
6 
3 
7 
9 
6 
6 
7 
6 

10 
9 

10 
7 

10 

2 
1 
3 
2 
4 
2 
8 
1 
4 
8 
3 
4 
5 
3 
9 
4 
9 
8 
9 
5 
6 
3 
7 
3 
6 
9 
7 
6 

10 
6 

10 
9 

10 
7 

60 
30 
90 

120 
30 

360 
100 
80 
70 
60 
40 
50 
90 
80 
45 
60 
90 

120 
140 
300 
200 
120 
300 
30 
15 
10 
60 
70 
90 
80 

120 
100 
30 
20 

26 
15 
16 
16 
9 

28 
27 
24 
7 

14 
12 
6 

14 
20 
10 
8 

10 
28 
10 
22 
12 
28 
8 

27 
21 
15 
13 
25 
10 
25 
14 
7 
7 

25 

282 
203 
223 
417 
146 
528 
191 
435 
393 
340 
212 
131 
206 
425 
373 
154 
400 
227 
492 
508 
346 
474 
564 
265 
233 
340 
211 
321 
428 
225 
471 
394 
180 
253 

17 
16 
11 
14 
29 
20 
17 
26 
24 
10 
7 

24 
11 
25 
13 
11 
16 
17 
9 

21 
7 

10 
15 
16 
5 

21 
7 
5 

28 
5 

16 
27 
8 
6 

465 
472 
437 
658 
300 
762 
493 
578 
635 
566 
364 
385 
531 
769 
452 
262 
700 
467 
623 
797 
490 
818 
836 
381 
535 
468 
549 
525 
572 
386 
580 
685 
471 
389 

26 
23 
17 
29 
20 
19 
11 
29 
28 
11 
26 
5 

16 
21 
21 
10 
15 
18 
7 

11 
13 
10 
24 
25 
6 

15 
12 
26 
5 

10 
21 
25 
15 
21 

696 
758 
758 
997 
615 

1073 
662 
746 
834 
816 
469 
586 
616 

1006 
657 
493 
837 
731 
790 

1030 
718 

1096 
1032 
451 
711 
560 
838 
870 
666 
635 
712 
752 
626 
577 

12 
13 
24 
9 

19 
23 
8 

13 
28 
28 
5 

15 
30 
24 
22 
18 
15 
16 
26 
8 

14 
7 

27 
9 

29 
28 
20 
29 
16 
18 
26 
28 
27 
6 

865 
1115 
1047 
1062 
865 

1213 
940 
853 

1129 
1161 
740 
912 
937 

1360 
929 
576 

1098 
1060 
1111 
1302 
784 

1260 
1145 
692 
812 
896 

1024 
1065 
736 
950 
999 
961 
918 
654 

6 
10 
23 
8 

17 
5 

23 
8 

21 
17 
15 
29 
17 
28 
9 

16 
21 
17 
5 

19 
9 

30 
12 
9 
6 

16 
18 
16 
13 
26 
30 
27 
15 
24 

Stage 2 is linked to the construction of an optimal route set for all the stations 

which have empty railcars kiA . For example, as is shown in Figure 2, the stations 

№1, №2, №3 and №6 are considered to be these types of stations. 

The formation of an optimal route set is made by the constructing method of the 
Table of an Optimal Route (TOR) in the transport network (Rakhmangulov, 1999). 
The table of an optimal route consists of three columns (Figure 3). The first column 
contains the number of the stations i  (the transport network peaks). The second 

column has the numbers of the preceding peaks i . The third consists of the 

potentials of the peaks ip . The shortest route to the i th peak is determined by the 
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numbers of the preceding peaks. In the TOR constructing process, it is possible to 
repeatedly adjust the peak potentials and the numbers of the previous peaks. Thus, it 
is common to build several tables and transfer the results of the previous 
constructions to a new table.  

The TOR constructing algorithm consists of the following actions: 

1. The first and the second columns of TOR are filled in with the peak numbers of 
the transport network in ascending order. In the second column, the starting peaks 
are marked as the negative values. The third column is filled in by the starting 
potentials of the peaks. The initial potentials of the starting peaks are equal to zero. 
The initial potentials of all other peaks are taken as the number M – the largest 
possible number. 

2. For each arc from the marked peak, the optimal arc condition ijij ppp
i
−  is 

checked. It means that a potential difference between the starting and the final arc 
peaks needs to be greater than the assessment value of the arc in-between these 
peaks. If this condition is satisfied, the usage of this arc is favorable. Then, as the 
preceding peak for the final arc peak (the second column is TOR) the peak number i  

(marked) is specified. The final peak potential is defined as the sum of the starting 

arc peak potential and the estimation of that arc, i.e. ijij ppp
i
+=  . 

3. If the optimal arc condition fails, the next arc from the marked peak is checked. 

4. If the optimal arc condition is checked for all the arcs from the marked peak, 
then the label from this peak is removed and the arcs from any next marked peaks 
are considered. After that, all calculations are repeated, starting with the second. The 
optimal route constructions are repeated as long as there is at least one marked peak 
in TOR. 

Figure 3 shows the results of the TOR construction for the station №1. 

Stage 3 is associated with the determination of the transportation time kijС  of 

the empty railcars delivered from the starting station of each route i  to the final 

stations j , where there is an empty railcar exigency kjB . In this case, the value kijС  

might be equal to the final peak potential value of the corresponding route, i.e. 

jkij pС = . For example, since there are empty railcars of the groups №1 and №2 at 

the station №1, the transportation cost is only determined for those stations where 
there is the railcar exigency of this group. 
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i λi pi λi pi λi pi λi pi λi pi λi pi λi pi 

1 -1 0 1 0 1 0 1 0 1 0 1 0 1 0 

2 2 M -1 70 1 70 1 70 1 70 1 70 1 70 

3 3 M 3 M -2 102 2 102 2 102 2 102 2 102 

4 4 M 4 M -2 154 -3 136 3 136 3 136 3 136 

5 5 M 5 M 5 M -3 209 -3 209 3 209 3 209 

6 6 M 6 M 6 M -3 215 -3 215 3 215 3 215 

7 7 M 7 M 7 M -3 325 -3 325 -3 325 3 325 

8 8 M -1 100 -1 100 -1 100 -1 100 -1 100 1 100 

9 9 M 9 M 9 M 9 M -4 379 -6 347 6 347 

10 10 M 10 M 10 M 10 M 10 M -6 453 6 453 

Starting 
table 

The first 
iteration 

The second 
iteration 

 

The third 
iteration 

 

The forth 
iteration 

 

The fifth 
iteration 

 

The sixth 
iteration 

 

Figure 3. The example of the calculation of the optimal routes for the station i=1 

There is demand of the first railcars group at the stations № 7 and №10. 
С1,1,7 = 325 min.; 
С1,1,10 = 453 min.; 
There is demand of the second railcars group at the stations № 7 and №10. 
С2,1,7 = 325 min.; 
С2,1,10 = 453 min. 

Similarly, the values kijС  are defined for another railway starting station and for 

another railcar group. As a result, the transportation time matrix for the empty 

railcars k of each group belonging to the contact schedule (Table 3) is formulated.  
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Table 3. The transportation time matrix of the empty railcars as a part of the trains 

inside the railway transport node 

The railcar group 

The number of the 
railcars at the 

station kiA  

The number of the railcars at the station 

kijС  and the exigency of the empty 

railcars kjB at the station 

k =1 

 B17=170 B1,10=10 
А11=30 325 453 
А12=50 288 150 

А13=100 325 453 
    

k =2 

 B27=160 B2,10=10 
А21=10 325 453 
А22=20 288 150 
А23=60 325 453 
А26=80 90 150 

    

k =3 

 B31=80  
А32=40 40  
А33=20 213  
А36=20 438  

Stage 4 is related to the calculation of the optimal values of the empty railcar flow 

kijx  (Formula 1) and is based on the solution to the static transport problem of linear 

programming in the matrix formulation (Rakhmangulov, 1999; Rakhmangulov et al., 
2014) (Table 4). The standard Excel Macros “Solution search” was used to solve this 
example. However, in order to implement the developed algorithm as a part of the 
intelligent transport system of railway transport, it is recommended that specialized 
programs for solving transport problems or linear programming libraries, e.g. the 
Linear Programming Library (GIPALS32), should be used. 

Table 4. The results of the calculation of the optimal size of the empty railcar flow 

inside the railway transport node 
The railcar group The number of the railcars 

at the station kiA  

The sizes of the empty railcar 

traffic flow kijx  

k =1  B17=170 B1,10=10 
А11=30 30 0 
А12=50 40 10 

А13=100 100 0 
    

k =2  B27=160 B2,10=10 
А21=10 10 0 
А22=20 10 10 
А23=60 60 0 
А26=80 80 0 

    

k =3  B31=80  
А32=40 40  
А33=20 213  
А36=20 438  
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Stage 5 is relevant to the preparation of the initial data in order to check the limit 
(Formula 9) of the number of the empty railcars in the train size (Table 5). 

Table 5. Initial data to check the limit of the number of the empty railcars in the train 

size 

The 
railcar 
group, 

k  

The 
startin

g 
statio
n, i  

The 
final 
stati
on, 
j  

The 
optimal 
size of 

the 
railcar 
block, 

kijx , the 

railcar 

The size of 
the 

undistribute
d empty 
railcar 

block, kijx , 

the railcar 

The size 
of the 

distribute
d empty 
railcar 
block, 

kijx , the 

railcar 

Transportati

on time, kijС  

min. 

3 2 1 40 25 15 40 

2 6 7 80 67 13 90 

1 2 10 10 1 9 150 

2 2 10 10 10 0 150 

3 3 1 20 4 16 213 

1 2 7 40 40 0 288 

2 2 7 10 10 0 288 

1 1 7 30 22 8 325 

1 3 7 100 100 0 325 

2 1 7 10 10 0 325 

2 3 7 60 60 0 325 

3 6 1 20 5 15 438 

If the condition irkij Qх   fails for the train r on any of the route peaks, then the 

railcar block size kijx  is taken as the minimum value ijirkij SiforQx =min , and 

the difference irkijkij Qxx min−=  is stored as an undistributed block.  

If the condition irkij Qх  is satisfied, the values irQ for all the route peaks are 

reduced by the block size kijirir хQQ −= . Consequently, the block kijx  is stored as 

distributed. If the value irQ  becomes zero for the train r , then the train is excluded 

from further calculations (Table 6). 
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Table 6. The check results of the limit of the number of the empty railcars in the train 

size 

No.1 r  irQ
 

No.

2 
r  irQ

 
No.

3 
r  irQ

 
No.4 r  irQ

 
No.5 r  irQ

 
2 1 15 1 - - - - - - - - - - - 
6 1 13 7 - - - - - - - - - - - 
2 1 9 4 1 10 9 1 14 10 - - - - - 
2 1 0 4 1 1 9 1 5 10 - - - - - 
3 1 16 2 2 16 1 - - - - - - - - 
2 1 0 4 1 1 9 1 5 10 2 6 7 - - 
2 1 0 4 1 1 9 1 5 10 2 6 7 - - 
1 1 26 2 1 16 3 1 8 7 - - - - - 
3 1 0 7 - - - - - - - - - - - 
1 1 18 2 1 8 3 1 0 7 - - - - - 
3 1 0 7 - - - - - - - - - - - 
6 1 15 9 1 28 8 2 26 1 - - - - - 

As a result of the distribution of the railcar block 321x for the stations No. 2 and 

No. 1, the following consequences occur: 

• the size of the block 321x  decreases by 15 cars; 

• the size of the block 267x  decreases by 13 cars, and so on. 

Tables 7, 8 present the maximum possible number of empty railcars as a part of 
train size (initial data). Also, these tables include the distribution result of the railcar 

blocks 321x , 267x , 10,12x , 10,22x , 331x , 127x , 227x , 117x , 137x , 217x , 237x , 361x . 

Table 7. The maximum possible number of the empty railcars in the train size (the 
initial data) 

i  j  1iQ  2iQ  3iQ  4iQ  5iQ  

1 
2 
2 
3 
2 
4 
1 
8 
8 
4 
4 
3 
3 
5 
4 
9 
8 
9 
5 
9 

2 
1 
3 
2 
4 
2 
8 
1 
4 
8 
3 
4 
5 
3 
9 
4 
9 
8 
9 
5 

26 
15 
16 
16 
9 

28 
27 
24 
7 

14 
12 
6 

14 
20 
10 
8 

10 
28 
10 
22 

17 
16 
11 
14 
29 
20 
17 
26 
24 
10 
7 

24 
11 
25 
13 
11 
16 
17 
9 

21 

26 
23 
17 
29 
20 
19 
11 
29 
28 
11 
26 
5 

16 
21 
21 
10 
15 
18 
7 

11 

12 
13 
24 
9 

19 
23 
8 

13 
28 
28 
5 

15 
30 
24 
22 
18 
15 
16 
26 
8 

6 
10 
23 
8 

17 
5 

23 
8 

21 
17 
15 
29 
17 
28 
9 

16 
21 
17 
5 

19 
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3 
6 
3 
7 
9 
6 
6 
7 
6 

10 
9 

10 
7 

10 

6 
3 
7 
3 
6 
9 
7 
6 

10 
6 

10 
9 

10 
7 

12 
28 
8 

27 
21 
15 
13 
25 
10 
25 
14 
7 
7 

25 

7 
10 
15 
16 
5 

21 
7 
5 

28 
5 

16 
27 
8 
6 

13 
10 
24 
25 
6 

15 
12 
26 
5 

10 
21 
25 
15 
21 

14 
7 

27 
9 

29 
28 
20 
29 
16 
18 
26 
28 
27 
6 

9 
30 
12 
9 
6 

16 
18 
16 
13 
26 
30 
27 
15 
24 

Table 8. The number of the empty railcars in the train size (after the distribution of 
the railcar blocks) 

i  j  1iQ  2iQ  3iQ  4iQ  5iQ  

1 
2 
2 
3 
2 
4 
1 
8 
8 
4 
4 
3 
3 
5 
4 
9 
8 
9 
5 
9 
3 
6 
3 
7 
9 
6 
6 
7 
6 

10 
9 

10 
7 

10 

2 
1 
3 
2 
4 
2 
8 
1 
4 
8 
3 
4 
5 
3 
9 
4 
9 
8 
9 
5 
6 
3 
7 
3 
6 
9 
7 
6 

10 
6 

10 
9 

10 
7 

18 
0 
8 
0 
0 

28 
27 
24 
7 

14 
12 
6 

14 
20 
1 
8 

10 
13 
10 
22 
12 
28 
0 

27 
21 
0 
0 

25 
10 
25 
5 
7 
7 

25 

17 
0 

11 
14 
29 
20 
17 
11 
24 
10 
7 

24 
11 
25 
13 
11 
16 
17 
9 

21 
7 

10 
15 
16 
5 

21 
7 
5 

28 
5 

16 
27 
8 
6 

26 
23 
17 
29 
20 
19 
11 
29 
28 
11 
26 
5 

16 
21 
21 
10 
15 
18 
7 

11 
13 
10 
24 
25 
6 

15 
12 
26 
5 

10 
21 
25 
15 
21 

12 
13 
24 
9 

19 
23 
8 

13 
28 
28 
5 

15 
30 
24 
22 
18 
15 
16 
26 
8 

14 
7 

27 
9 

29 
28 
20 
29 
16 
18 
26 
28 
27 
6 

6 
10 
23 
8 

17 
5 

23 
8 

21 
17 
15 
29 
17 
28 
9 

16 
21 
17 
5 

19 
9 

30 
12 
9 
6 

16 
18 
16 
13 
26 
30 
27 
15 
24 
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Stage 6 is related to the correction of leftover empty railcars at the stations 
(Table 9). 

Table 9. The effect of the adjustment of the leftover empty railcars. 

Undistributed railcar blocks Distributed railcar blocks 

k  i  kijx  k  j  kijx  

1 
1 
1 
1 
2 
2 
2 
2 
2 
3 
3 
3 

1 
2 
2 
3 
1 
2 
2 
3 
6 
2 
3 
6 

22 
1 

40 
100 
10 
10 
10 
60 
67 
25 
4 
5 

1 
1 
1 
1 
2 
2 
2 
2 
2 
3 
3 
3 

7 
7 
7 

10 
7 
7 
7 
7 

10 
1 
1 
1 

0 
8 
0 
9 

13 
0 
0 
0 
0 

15 
16 
15 

A11=22; A12=41; A13=100; A21=10; A22=20; A23=60; A26=67; A32=25; A33=4; A36=5; 

Total: 354 railcars 
B17=162; B1,10=1; B27=147; B2,10=10; B31=34 

Total: 354 railcars 

Thus, according to the adjustment, the following intermediate results are formed: 

• a set of the distributed railcar blocks kijx ; 

• the routes of their transit ijS ;  

• the train numbers r which have distributed railcar groups in their train 
size (Table 10). 

Table 10. The intermediate results of the optimal distribution of the empty railcars 

k  i  j  
kijx  kijС  No.1 r  No.2 r  No.3 r  No.4 r  No.5 r  

1 1 7 8 325 1 1 2 1 3 1 7 - - - 
1 2 10 9 150 2 1 4 1 9 1 10 - - - 
2 6 7 13 90 6 1 7 - - - - - - - 
3 2 1 15 40 2 1 1 - - - - - - - 
3 3 1 16 213 3 1 2 2 1 - - - - - 
3 6 1 15 438 6 1 9 1 8 2 1 - - - 

Stage 7 is related to the correction of the initial data for the next iteration, and it 
includes:  

1. the adjustment of the number of the empty railcars at the stations (Figure 4, the 
new values are marked in red). 
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2. the adjustment of the train schedule according to the contact itinerary. As a 
result of this adjustment, the trains that can no longer include empty railcars are 
removed from the train schedule (Table 11). 

 

Figure 4. The results of the adjustment of the initial data for the second iteration (the 
correction of the transport network) 

Table 11. The result of the train schedule adjustment inside the railway transport 

node 

i  j  1it  1iQ  2it  2iQ  3it  3iQ  4it  4iQ  5it  5iQ  

1 
2 
2 
3 
2 
4 
1 
8 
8 
4 
4 
3 
3 
5 
4 
9 
8 
9 
5 
9 
3 
6 
3 
7 
9 
6 
6 
7 
6 

10 
9 

10 
7 

10 

2 
1 
3 
2 
4 
2 
8 
1 
4 
8 
3 
4 
5 
3 
9 
4 
9 
8 
9 
5 
6 
3 
7 
3 
6 
9 
7 
6 

10 
6 

10 
9 

10 
7 

60 
- 

90 
- 
- 

360 
100 
80 
70 
60 
40 
50 
90 
80 
45 
60 
90 

120 
140 
300 
200 
120 

- 
30 
15 
- 
- 

70 
90 
80 

120 
100 
30 
20 

26 
15 
16 
16 
9 

28 
27 
24 
7 

14 
12 
6 

14 
20 
10 
8 

10 
28 
10 
22 
12 
28 
8 

27 
21 
15 
13 
25 
10 
25 
14 
7 
7 

25 

282 
203 
223 
417 
146 
528 
191 
435 
393 
340 
212 
131 
206 
425 
373 
154 
400 
227 
492 
508 
346 
474 
564 
265 
233 
340 
211 
321 
428 
225 
471 
394 
180 
253 

17 
0 

11 
14 
29 
20 
17 
11 
24 
10 
7 

24 
11 
25 
13 
11 
16 
17 
9 

21 
7 

10 
15 
16 
5 

21 
7 
5 

28 
5 

16 
27 
8 
6 

465 
472 
437 
658 
300 
762 
493 
578 
635 
566 
364 
385 
531 
769 
452 
262 
700 
467 
623 
797 
490 
818 
836 
381 
535 
468 
549 
525 
572 
386 
580 
685 
471 
389 

26 
23 
17 
29 
20 
19 
11 
29 
28 
11 
26 
5 

16 
21 
21 
10 
15 
18 
7 

11 
13 
10 
24 
25 
6 

15 
12 
26 
5 

10 
21 
25 
15 
21 

696 
758 
758 
997 
615 

1073 
662 
746 
834 
816 
469 
586 
616 

1006 
657 
493 
837 
731 
790 

1030 
718 

1096 
1032 
451 
711 
560 
838 
870 
666 
635 
712 
752 
626 
577 

12 
13 
24 
9 

19 
23 
8 

13 
28 
28 
5 

15 
30 
24 
22 
18 
15 
16 
26 
8 

14 
7 

27 
9 

29 
28 
20 
29 
16 
18 
26 
28 
27 
6 

865 
1115 
1047 
1062 
865 

1213 
940 
853 

1129 
1161 
740 
912 
937 

1360 
929 
576 

1098 
1060 
1111 
1302 
784 

1260 
1145 
692 
812 
896 

1024 
1065 
736 
950 
999 
961 
918 
654 

6 
10 
23 
8 

17 
5 

23 
8 

21 
17 
15 
29 
17 
28 
9 

16 
21 
17 
5 

19 
9 

30 
12 
9 
6 

16 
18 
16 
13 
26 
30 
27 
15 
24 
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Stages 2-7 of the described algorithm must be repeated until the very occurrence 
of undistributed railcar blocks. If there are such railcar blocks at the end of the 
estimated period, they are the leftover empty railcars carried forward to the next 

estimated period. This leftover can be eliminated by increasing the values irQ  for the 

trains. After that, a full recalculation of the plan for the distribution of the empty 
railcars is required and should start with the first step of the algorithm. 

4 Conclusion 

The results of the present model are: 

• a considerable cluster of the values 
kijx that determines the optimal 

number of the railcars of each group in the blocks. These railcars are 
supposed to be delivered to the specific loading points (stations) during 
the estimated period (within one day); 

• the optimal transit routes of the railcar blocks 
ijS ;  

• the scheduled number of the trains r  for each station. The train size 
should include empty railcar blocks. 

As a result, the proposed model, associated with the rational use of empty 
railcars, might lead to an around 15-20% decline in the dead time of empty railcars 
in the railway transport node. 

The developed model, the method and the algorithm of its implementation can 
easily be integrated into the existing intelligent control systems of railway transport 
hubs. Current railway transport systems are ready and contain all the data necessary 
for the implementation of the present model. 

At the same time, the disadvantage of this algorithm is the relatively low accuracy 
of compliance with the train schedule in the railway transport node and in the 
railway transport systems of industrial enterprises. In most cases, this type of 
schedule is not in place due to the fact that internal railway traffic is moderated by 
dispatchers and depends on the availability of specific railcars at the railway station, 
as well as on the current loading situation at this and closely located stations. Owing 
to the solid internal scheduled train flows in the railway transport node, there are 
still some stable freight traffic flows. However, it is worth noting that even for these 
trains frequent schedule breaches were observed due to uneven railway stations and 
the railway track workload. 

Future studies are expected to bring about a solution to this problem. The 
prediction of the time of the train departure from the railway transport node stations 
by using BigData tools might be a possible way to carry it out. A promising approach 
to the improvement of the accuracy of train traffic forecasts inside the railway 
transport node implies using the simulation method in the operational mode. Based 
on the data of the availability and transit status of railcars, the modern simulation 
models of railway stations can enable an operational assessment of the possible 
scenarios of the operating workload of railway stations.  
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To sum it up, the current research study, specifically the promising tools and 
methods, might be helpful in improving the accuracy of the result of optimization 
during the distribution of empty railcars in the railway transport node. 
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