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Research paper 

Abstract: In the context of supply chain management, supplier selection can be defined 
as the process by which organizations score and evaluate a range of alternative 
suppliers to choose the best possible one who can provide superior quality of raw 
materials at cheaper rate and lesser lead time. It is a decision making process with 
multiple trade-offs between various conflicting criteria which in turn helps the 
organizations identify the suitable suppliers that would establish a robust supply chain 
assisting in maintaining a competitive edge. The main objective of supplier selection is 
thus focused on reducing purchase risk, maximizing overall value to the organization, 
and developing closeness and long-term relationships between the suppliers and the 
organization. In this paper, while selecting the most suitable supplier for gearboxes in 
an Indian iron and steel industry, assessments of three decision makers on the 
performance of five candidate suppliers with respect to five evaluation criteria are first 
aggregated using rough numbers. The definitive distances of those rough numbers are 
then treated as the inputs to a 25 full-factorial design plan with the corresponding 
multi-attributivec border approximation area comparison (MABAC) scores as the 
output variables. Finally, a design of experiments (DoE)-based metamodel is 
formulated to interlink the computed MABAC scores with the considered criteria. The 
competing suppliers are ranked based on this rough-MABAC-DoE-based metamodel, 
which also easies out the computational steps when new suppliers are included in the 
decision making process. 

Key words: Supplier selection; Rough numbers; MABAC; DoE; Metamodel 
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1. Introduction 

In the light of present day COVID-19 pandemic situation, the importance of a 
robust supply chain management system has been reasserted. The goals of a supply 
chain have been newly oriented opting for a fair balance between the global and local 
networks. This has made industries in diverse sectors to reconsider their existing 
choices and identify the most reliable suppliers to keep their raw material supplies 
uninterrupted without compromising on quality, specially under uncertain 
environment. This problem has intensely been pronounced in the manufacturing 
sector which needs to keep up with its production to meet the global requirements 
irrespective of the prevailing situation (Vonderembse and Tracey, 1999). Iron and 
steel industry is one such important manufacturing sector that needs regular 
supplies of raw materials; therefore, a critical analysis is demanding while selecting 
an appropriate set of suppliers. It involves a well informed and rigorous research 
regarding the possible parameters based on which the candidate suppliers for a 
particular item should be evaluated to single out the most appropriate supplier while 
scraping out the unsuitable ones (Verma and Pullman, 1998). In this direction, 
application of any of the existing multi-criteria decision making (MCDM) techniques 
would be quite helpful as it has the ability to identify the most apposite supplier to 
provide the right quantity of material with right quality at right time and right price 
based on a set of conflicting evaluation criteria (Mukherjee, 2017).  

The MCDM is the science which takes into account different criteria with varying 
degrees of importance to search out the most suitable option/course of action. The 
first step involves in development of the initial decision matrix exhibiting the relative 
performance of each of the candidate alternatives with respect to the considered 
criteria. In this step, there may be participation of a group of experts/decision 
makers, each opining and assigning performance scores to the available alternatives 
based on each criterion. In the second step, again based on the judgments of the 
decision makers, relative weights are allocated to all the criteria depending on their 
importance to the decision making problem under consideration. The final step 
involves in ranking of the set of alternatives from the best to the worst. The 
application potentiality of MCDM methodologies in solving complex manufacturing-
related decision making problems has attracted attention of the researchers leading 
to the development of different innovative ranking techniques, like analytic 
hierarchy process (AHP) (Saaty, 1988), technique for order of preference 
by similarity to ideal solution (TOPSIS) (Behzadian et al., 2012), grey relational 
analysis (GRA) (Abdulshahed et al., 2017), multi-attributive border approximation 
area comparison (MABAC) (Pamučar and Ćirović, 2015), measurement of 
alternatives and ranking according to compromise solution (MARCOS) (Stević et al., 
2020; Mahmutagić et al. 2021) etc. While all these methods have their unique 
mathematical foundations, their implementation in a manufacturing industry largely 
depends on the ease of implementation and ability to generate accurate ranking 
results. The MABAC is one such methodology which can provide a detailed analysis 
of the alternatives while partitioning them into upper, lower and border 
approximation areas along with identification of their relative strengths and 
weaknesses with respect to each of the criteria.  

However, there is a major challenge associated with formulation of the decision 
matrix due to uncertainty/vagueness involved in human judgment. Usually, the 
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criteria set based on which the candidate alternatives are assessed consists of both 
quantitative and qualitative attributes. For qualitative criteria, it becomes difficult for 
the team of decision makers to assign exact deterministic values. In these cases, 
performance scores of the alternatives with respect to the qualitative criteria are 
assigned based on imprecise linguistic judgments which greatly vary from one 
decision maker to the other. Although, it is remarkably important to account for this 
vagueness while solving critical decision making problems, like supplier selection, it 
cannot be denied that implementation of fuzzy MCDM techniques is more 
mathematically complex, involving choice of appropriate fuzzy membership 
functions affecting the final selection decision. In this direction, a lot of 
methodologies have already been proposed to aggregate the subjective performance 
scores of the alternatives. It has been noticed that application of rough numbers with 
uncomplicated mathematical steps can effectively resolve the problem of dealing 
with qualitative criteria in a decision making problem (Zhai et al., 2009). Rough 
numbers have efficiently been integrated with other MCDM tools, like analytic 
network process (ANP) and TOPSIS (Li et al., 2018), complex proportional 
assessment (COPRAS) (Matić et al., 2019), additive ratio assessment (ARAS) (Radović 
et al., 2018), AHP and MABAC (Roy et al., 2018; Pamučar et al., 2018a), best worst 
method (BWM) and weighted aggregated sum product assessment (WASPAS) (Stević 
et al., 2018; Stojić et al., 2018), BWM and simple additive weighting (SAW) (Stević et 
al., 2017), step-wise weight assessment ration analysis (SWARA) and WASPAS 
(Sremac et al., 2018), AHP and TOPSIS (Shojaei and Bolvardizadeh, 2020)  etc.    

In most of the MCDM techniques, the corresponding ranking results are derived 
based on pair-wise or relative comparisons between the candidate alternatives, 
which make the decision making process more tedious and time consuming. 
Whenever a new alternative enters into the decision making process or an existing 
alternative leaves the process, the entire computational procedure needs to be 
reinitiated from the scratch. In most of the practical situations, the set of alternatives 
always keeps on changing. For example, in an iron and steel industry, it has often 
been noticed that a new supplier may reach out, while an existing supplier may fall 
off the list due to poor/failing standards. Learning from the recent times of 
vulnerability and uncertainty, it is recommended to keep the list of participating 
suppliers always dynamic.  

In this paper, an MCDM methodology integrating rough numbers, MABAC method 
and design of experiments (DoE) is proposed to account for the vagueness involved 
in the group decision making process while providing detailed analysis of the 
derived results at the same time. In an iron and steel industry, the relative 
performance of five participating suppliers is appraised by three decision makers 
with respect to five evaluation criteria based on a 1-9 scale. These subjective 
judgments of the decision makers are then aggregated to form the initial decision 
matrix using rough numbers. With five evaluation criteria, a 25 full-factorial 
experimental design plan is formulated along with determination of the 
corresponding MABAC score for each of the experimental trials. In this methodology, 
different evaluation criteria and MABAC scores are respectively treated as the design 
parameters and responses in the DoE to develop a metamodel. Based on this 
metamodel, the composite score of any supplier can easily be calculated in a single 
step, thus relieving the decision maker from complex and time-consuming 
computational steps. In other MCDM techniques, the concerned decision maker 
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needs to reinitiate the entire calculation steps when a new supplier enters into or 
leaves out the existing list of candidate alternatives. But, in this developed 
metamodel, the respective score along with the rank of a new supplier can easily be 
estimated while putting the corresponding performance values into the model. 
Similarly, the relative ranking of the suppliers can quickly be updated when an 
existing supplier leaves the appraisal process. Simply, the computational burden 
would be remarkably reduced using this metamodel in the supplier selection 
process.   

The rest of this paper is organized as follows. Section 2 reviews the recent 
literature dealing with the application of different MCDM techniques in solving 
diverse supplier selection problems. In Section 3, mathematical details of rough 
numbers, MABAC method and DoE are presented. Section 4 deals with a case study 
where the proposed rough-MABAC-DoE method is adopted for identifying the most 
appropriate supplier in an Indian iron and steel industry. Conclusions are drawn in 
Section 5 along with the future directions.  

2. Literature review 

The present literature is flooded with the applications of various mathematical 
techniques, especially MCDM tools, for identification of the suitable suppliers to fulfill 
the requirements of a diverse range of organizations. The supplier selection process 
generally starts with listing the right set of criteria based on which the competing 
suppliers are appraised. This criteria set obviously varies from one industry to the 
other depending on the requirements and end products. The process terminates with 
the application of a suitable methodology to single out the most appropriate supplier 
for a given organization. Zimmer et al. (2016) conducted an exhaustive literature 
survey to list down all the possible criteria that can be accounted for selection of 
sustainable suppliers along with diverse methodologies implemented to rank them. 

Luzon and El-Sayegh (2016) adopted Delphi method along with AHP to select 
suppliers for oil and gas projects, while classifying the considered criteria into 
techno-commercial and organizational aspects. Kumar et al. (2018) designed a 
capital procurement decision making model by integrating fuzzy-Delphi and AHP-
decision making trial and evaluation laboratory (DEMATEL) methods for selecting 
suppliers for a given organization. Yazdani et al. (2017) proposed an integrated 
quality function deployment (QFD)-MCDM-based approach for green supplier 
selection while considering several important evaluation criteria, like quality 
adaptation, price, energy and natural resource consumption, and delivery speed. 
While treating cost of products, quality of products, service provided, capability of 
delivering on time, technology level, environmental management system and green 
packaging as the evaluation criteria, Abdullah et al. (2018) applied preference 
ranking organization method for enrichment of evaluations (PROMETHEE) for 
solving a green supplier selection problem. Badi et al. (2018) proposed the 
application of combinative distance-based assessment (CODAS) method for solving a 
supplier selection problem for a steel making industry in Libya, which considering 
quality, direct cost, lead time and logistics services as the main evaluation criteria. In 
a group decision making environment, Badi and Ballem (2018) integrated rough-
BWM with multi-attribute ideal real comparative analysis (MAIRCA) to assess the 
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performance of pharmaceutical suppliers based on cost, quality, supplier profile, 
delivery and flexibility criteria. A study was conducted by Banaeian et al. (2018) to 
evaluate and select green suppliers for an agri-food industry while combining fuzzy 
set theory with VIKOR (VlseKriterijumska Optimizacija I Kompromisno Resenje), 
GRA and TOPSIS methods, and considering service level, quality, price and 
environmental management system as the evaluation criteria. Akcan and Güldeş 
(2019) applied several integrated MCDM methodologies, like AHP-TOPSIS, AHP-
SAW, AHP-GRA and AHP-elimination et choice translating reality (ELECTRE) to rank 
suppliers based on logistics, cost, quality, flexibility and reliability criteria. 

While accounting for the uncertainties involved in a group decision making 
process, Chattopadhyay et al. (2020) proposed the application of D-MARCOS method 
for solving a supplier selection problem in a steel industry with product quality, 
delivery compliance, price, technical capability, production capability, financial 
strength and electronic transaction capability as the evaluation criteria. In order to 
deal with both weighting of the criteria and uncertainty in group decision making, 
Javad et al. (2020) combined BWM with fuzzy TOPSIS to rank green suppliers in a 
steel company considering collaborations, environmental investments and economic 
benefits, resource availability, green competencies, environmental management 
initiatives, research and design initiatives, green purchasing capabilities, regulatory 
obligations, pressures and market demand as the major selection criteria. Stević et al. 
(2020) endeavored to prove the application potentiality of a new MCDM 
methodology in the form of MARCOS to assess and rank sustainable suppliers in 
healthcare sector with an exhaustive set of 21 criteria. Wang et al. (2020) first 
employed fuzzy-AHP method to determine weights of reliability, responsiveness, 
flexibility, cost and assets criteria, and later adopted PROMETHEE to rank the 
competing suppliers in a textile industry.  

It has been revealed from the above-cited literature that selection of suppliers for 
varying organizations based on a set of conflicting evaluation criteria is really a 
complicated problem to solve, especially in group decision making environment 
involving a degree of uncertainty with respect to human judgments. To resolve this 
issue, several hybridized models have already been proposed. However, most of 
those models are computationally expensive which hinders their applications in real-
time manufacturing scenario. In all those models, with the addition of a new 
alternative or deletion of an existing alternative from the set disrupts the entire 
calculation process and it needs to be reinitiated from the scratch in each occasion. 
Taking these drawbacks of the existing hybridized MCDM tools in solving supplier 
selection problems, this paper proposes to develop a DoE-based metamodel in the 
form of an regression equation while integrating rough numbers with the 
advantageous features of MABAC method. The performance scores of the alternative 
suppliers with respect to the evaluation criteria are aggregated using rough numbers 
in a group decision making environment having three participating decision makers 
and the competing suppliers are finally ranked from the best to the worst using the 
computed MABAC scores. Based on the developed metamodel, the performance 
score of a new supplier can easily be computed, thus relieving the concerned 
decision maker from lengthy repetitive calculation steps. Keeping in mind the 
requirements and importance of selection of suppliers, the applicability of this 
integrated rough-MABAC-DoE method is demonstrated here to appraise and rank 
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five different suppliers in a leading steel manufacturer in India based on five pivotal 
criteria in a group decision making environment. 

3. Methods 

3.1. Rough numbers 

One of the biggest challenges associated with group decision making is the 
uncertainty and vagueness involved in determining the relative weights of different 
criteria and performance appraisal of the candidate suppliers with respect to those 
criteria. In this direction, various methodologies, like fuzzy set theory, intuitionistic 
fuzzy set, D numbers etc. have been proposed. In this paper, the application 
potentiality of rough numbers in assessing the performance of the considered 
alternatives with regard to five evaluation criteria while solving a supplier selection 
problem is explored. Rough numbers have become popular due to their simplicity 
and adaptability while taking into account linguistic judgments of different decision 
makers based on boundary intervals using lower and upper limits (Zhai et al., 2008). 
Zhai et al. (2009) further introduced interval arithmetic to analyze and operate 
rough numbers. 

Let U be the universal set comprising all the objects, X is an arbitrary object of U, 
and R is a set of n clases R = {C1,C2,…,Cn} covering all the objects in U. If these n classes 

are ordered as {C1 < C2 <…< Cn}, then ,, RCUX q  1 ≤ q ≤ n, where R(X) denotes 

the class to which the object belongs.  The lower approximation ))(( qCApr , upper 

approximation ))(( qCApr and boundary region ))(( qCBnd of class Cq are given as 

below: 

 qq CXRUXCApr = )(/)(  (1) 

 qq CXRUXCApr = )(/)(
  (2) 

   qqq CXRUXCXRUXCBnd = )(/)(/)(  (3) 

Thus, the class Cq can be expressed as rough number )( qCRN with upper 

limit ( ))( qCLim  and lower limit ( ),)( qCLim defined as below (Chakraborty et al., 2020): 
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where UM and LM are the number of objects in the upper and lower 

approximations respectively, and L
ijx and U

ijx are the lower and upper evaluation 
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limits of jth criterion with respect to ith alternative respectively. The rough boundary 
interval (RBnd) can now be expressed as the difference between the upper and lower 
evaluation limits. 

)()( qq CLimCLimRBnd −=  (7) 

A large value of RBnd symbolizes more vagueness, while, a small value represents 
more preciseness. It is often important to rank rough numbers to attain definitive 
results. Zhai et al. (2008) proposed a methodology for ranking of rough numbers. Let 
RN(A) and RN(B) be two rough numbers. If one rough boundary interval is not 
strictly bounded by the other, there may be two possibilities: 

a) If )()( BLimALim  and )()( BLimALim   or 

 )()( BLimALim  and ),()( BLimALim  then ).()( BRNARN   

b) If )()( BLimALim = and ),()( BLimALim = then ).()( BRNARN =   

However, if they are strictly bounded, they can be ranked based on their median 
values. Hence, the following three cases may be observed: 

a) If M(A) > M(B), then RN(A) > RN(B) 

b) If M(A) < M(B), then RN(A) < RN(B) 

c) If M(A) = M(B), then RN(A) = RN(B) 

where M(A) and M(B) are the median values of rough numbers RN(A) and RN(B) 
respectively.  

Let us assume RN(α) = [Lα, Uα] and RN(β) = [Lβ, Uβ] where Lα and Lβ are the lower 
limits, and Uα and Uβ are the upper limits of the respective rough numbers. The 
following arithmetic rules can then be applied for interval analysis: 

RNα + RNβ = [Lα + Lβ, Uα + Uβ] (8) 

RNα × RNβ = [Lα × Lβ, Uα × Uβ] (9) 

RNα × k = [kLα, kUα], where k is a non-zero constant. (10) 

In order to determine the distance between two rough numbers, the Euclidian 
distance equation is employed. Thus, D(a,b) represents the Euclidian distance 
between two rough numbers RN(a) and RN(b) such that RN(a) = [a-, a+] and RN(b) = 
[b-, b+]. 

( ) ( )( )22

2

1
),( ++−− −+−= bababaD    (11) 

This property of rough numbers is employed to calculate the distance between 
the considered alternative for a given criterion and geometric aggregation value for 
that criterion. An illustration of the same can improve the understanding. Let us 
assume a decision matrix X having n alternatives (A1, A2,…,Ai,…,An) and m criteria (C1, 
C2,…,Cj,…,Cm) such that using rough numbers, the performance score for ith alternative  
against the considered set of criteria  can be expressed as 

       ( )+−+−+−+−= imimijijiiiii xxxxxxxxA ,,,,,,,,, 2211  . The geometric aggregation value for jth 

criterion is given by  +−= jjj fffRN ,)( , where 
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This helps in formation of the distance matrix Y = [yij]n×m from the initial matrix X 
such that: 
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where 
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2
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3.2. Rough MABAC 

MABAC is a newly developed and widely accepted MCDM technique (Pamučar 
and Ćirović, 2015) which primarily ranks a set of alternatives based on their 
distances from the border approximation area for each criterion. However, it has 
been modified from time to time to develop more purposeful hybrid models. In this 
paper, MABAC is integrated with rough numbers which is further fed into a DoE 
model to provide a generalized metamodel for evaluation and ranking of a set of 
suppliers. Considering a decision problem having n alternatives (A1, A2,…,Ai,…,An) and 
m criteria (C1, C2,…,Cj,…,Cm), the procedural steps of rough MABAC method are 
enumerated as below (Chakraborty et al., 2020):  

Step 1: The decision matrix X is constructed using rough numbers while taking 
into account the judgments of a team of experts/decision makers in assessing the 
relative performance of the suppliers with regard to the evaluation criteria: 
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where RN(xij) = ].,[ +−

ijij xx  



Chattopadhyay et al./Oper. Res. Eng. Sci. Theor. Appl. 5(1) (2022) 20-40 

 

28 
 

Step 2: Depending on the type of the criterion, the initial decision matrix X is 

normalized to obtain the corersponding normalized decision matrix   .,
mnijij nnN
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where ),(min),(max −−++ == ij
i

jij
i

j xxxx B is the set of beneficial criteria and C is the 

set of cost criteria.                                                                                 

Step 3: Determine the weight assigned to each criterion W = (w1, w2,…,wj,…,wm) 

such that 1
1

= =

m

j jw . The weighted normalized decision matrix  
mnijij yyY


+−= , is now 

calculated using Eq. (18). 

( ) jijij wny 1+= −− ; ( ) jijij wny 1+= ++ , mjni ,...,2,1 ; ,...2,1 ==   (18) 

Step 4: The border approximation area (BAA) matrix is derived based on 
geometric aggregation of the rough numbers. 
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Step 5: The Eucledian distance of an alternative from the BAA is evaluated based 
on the difference between the border approximation area and the weighted 
normalized matrix, and is represented by the matrix  

mnijkRNK


= )( . 
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Step 6: The considered alternatives are finally ranked in descending order of Si 
values.  


=

==
m

j
iji nikS

1

),,2,1(     (21) 

3.3 Design of experiments 

The DoE is a statistical methodology to help in determining the influence of 
independent factors/variables as well as effect of their interactions on the system 
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response (dependent variable). Each of these factors can operate at different levels 
and hence, several experiments need to be performed to study the effects of factor 
level variations on the system under consideration. It has already established itself 
as a helpful tool for engineers and decision makers to develop strong mathematical 
metamodels based on experimental results. A full-factorial design proves to be 
exhaustive as it includes all the possible combinations for the factors at each of their 
corresponding levels. However, implementation of a full-factorial design plan is 
computationally expensive and time consuming. In these cases, a suitable subset of 
factor level combinations is selected resulting in a fractional factorial experiment 
design plan. In this paper, a two-level full-factorial experimental design plan is 
adopted to visualize how the considered evaluation criteria influence the MABAC 
scores for alternative suppliers. The metamodel linking the dependant variable 
(MABAC score) with m independent variables (criteria) is expressed as below: 

 +++++= immii xxxY 22110  (22) 

where Y is the response variable (MABAC score), β0 is the y-intercept coefficient, 
β1-βm are the effect coefficients for m criteria, x1-xm are the input variables and ε is 
the error term. The main effect of each input variable is presumed to be independent 
of the other variables. In this metamodel, interaction effects can also be considered 
to explore the presence of interactions between the input variables.  

In this paper, a two-level full-factorial design plan is adopted with 25 
combinations, where only the minimum and maximum intervals for each factor 
(criterion) are considered to develop the corresponding factorial design. The related 
distance values of these intervals are subsequently treated as the inputs and MABAC 
scores as the outputs to the DoE for development of the required metamodel.  

4. Development of a rough-MABAC-DoE-based metamodel 

It has already been noticed that the manufacturing industries often face problems 
while indentifying the best alternative/course of action amid a set of conflicting 
criteria. This paper proposes a new methodology for evaluation and ranking of 
competing suppliers based on a developed metamodel in an Indian iron and steel 
industry. The existing MCDM techniques suffer from a major drawback, i.e. when a 
new alternative is introduced in the decision making problem, the entire 
computational process needs to be reinitiated from the scratch to derive the ranking 
of the candidate alternatives, which often constrains their applications in real-time 
situations. In the proposed method, once the rough-MABAC-DoE-based metamodel is 
formulated, the concerned decision maker can easily estimate the corresponding 
MABAC score for a new supplier based on its performance and position it in the 
revised ranking list. The application potentiality of this method is illustrated as a 
case study in an Indian iron and steel industry with an annual production of around 
2.4 million tonnes of crude steel. Like any other industry operating at such a large 
scale, it also houses a large number of machineries which need to be maintained 
from time to time for uninterrupted production. This creates requirement for large 
varieties of gearboxes to be procured from the suppliers across the globe. At this 
stage, it becomes essential to choose the most apposite supplier who can deliver the 
right quality of gearboxes at right quantity, right price and right time. It is 
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worthwhile to mention here that while selecting the most suitable supplier for a 
manufacturing industry, the set of evaluation criteria usually varies depending on the 
item/product to be purchased. In a group decision making environment, assessment 
of the candidate suppliers with respect to the considered criteria also varies from 
one decision maker to the other depending on the experience and expertise of each 
of the participating decision makers. To deal with this problem, i.e. selection of 
suppliers for providing gearboxes in the iron and steel industry, the opinions of three 
decision makers (DM1, DM2 and DM3) are sought. These decision makers have been 
respectively selected from the finance, materials management and mechanical 
technical bureau of the organization having 15, 20 and 15 years of job experience. 
Tables 1 and 2 exhibit the list of evaluation criteria and candidate suppliers 
considered for this supplier selection problem. For having replications in the 
experimental design plan while developing the corresponding metamodel, two sets 
of criteria weights are chosen based on the judgments of the decision makers. In this 
direction, other subjective techniques for criteria weight measurement, like BWM 
(Rezaei, 2015), full consistency method (FUCOM) (Pamučar et al., 2018b; Durmić et 
al. 2020), level based weight assessment (LBWA) (Žižović and Pamučar, 2019) etc. 
can also be applied. These criteria weights are so selected that their summation must 
be always one. Amongst these criteria, delivery compliance and price are non-
beneficial (cost) attributes requiring their lower values, whereas, higher values are 
desired for the remaining three beneficial criteria.  

Table 1. Description of the evaluation criteria 
Criterion Description Weight 

Product quality (C1) 
It accounts for credibility of the product 
with respect to its expected performance 
and quality.  

0.318 0.300 

Delivery compliance 
(C2) 

It considers the time taken to fulfill an order 
once it has been placed even in uncertain 
situations. Meeting the delivery schedule is 
extremely important to maintain 
uninterrupted production of the end 
products. 

0.226 0.240 

Price (C3) 
It is the monetary value of an item that the 
organization has to pay to the supplier 
against its delivery.  

0.206 0.200 

Technological 
capability (C4) 

It deals with the capability of a supplier to 
remain updated with the state-of-the-art 
technologies to fulfil the requirements of the 
modern day manufacturing organizations.  

0.132 0.138 

Production capability 
(C5) 

It focuses on the competence of a supplier 
to provide the required quality and quantity 
of products, especially in times of 
fluctuating demands. 

0.118 0.122 

In order to single out the most suitable supplier for the identified product, the 
decision makers now appraise the performance of each of the candidate suppliers 
with respect to five evaluation criteria, while assigning scores based on a 1-9 scale, 
where 1-2 indicate poor performance, 3-7 denote moderate performance and 8-9 
signify satisfactory performance. This performance appraisal process by the three 
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participating suppliers is exhibited through Tables 3-5 in the form of evaluation 
matrixes. From Table 3, it can be revealed that DM1 assesses the performance of 
supplier S1 with respect to criteria C1 = 4 (moderate), C2 = 3 (moderate), C3 = 2 
(poor), C4 = 6 (moderate) and C5 = 8 (satisfactory). Rough numbers are now 
employed to aggregate the individual judgments of the three decision makers. For 
example, the set of performance ratings for supplier S1 with respect to criterion C1 as 
evaluated by the three decision makers is expressed as x11 = {4, 6, 7}. Based on Eqs. 
(4)-(6), this set of subjective linguistic information is converted into the 
corresponding rough numbers as below: 

For element x11 = {4, 6, 7} 

,67.5)764(
3

1
)4(,00.4)4( =++== LimLim

50.6)76(
2

1
)6(,00.5)64(

2

1
)6( =+==+= LimLim  

00.7)7(,67.5)764(
3

1
)7( ==++= LimLim  
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1

11 === xRNxRNxRN  
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3
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11 =

++
=Lx 39.6

3
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11 =
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Table 2. List of the candidate suppliers  

Supplier Description 

S1 
While this supplier proves to be a cheaper alternative with 
reputable delivery compliance, it does not appear to be the most 
suitable option under emergency situations.  

S2 
It is a public sector organization situated in the eastern India. While 
it is reputed for its technological strength and reliability, there are 
situations when it fails to meet the supply deadlines. 

S3 

This organization manufacturing premium gearboxes has customers 
all over the country. However, there is a substantial tradeoff with 
respect to robustness of its supply chains and adaption to changing 
technological scenario.   

S4 

It is a reputed organization established in the southern India, always 
adhering to the specified delivery schedules while supplying 
gearboxes of perfect quality. However, it offers higher price for its 
products as compared to other suppliers.  

S5 
It is a relatively new organization, yet to capture its reputation in 
the market and stabilize its delivery modes. 

In this way, all the performance assessment scores assigned by the three decision 
makers are aggregated using rough numbers to formulate the corresponding 
combined evaluation matrix, as shown in Table 6. In this table, the beneficial and cost 
criteria are also identified along with their best and worst rough intervals. For 
example, with respect to product quality, S3 

performs the best, S1 ensures the best 
delivery compliance at the lowest price, S2 has the highest technological capability 

and 4S exhibits the highest production capability. 
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Table 3. Evaluation matrix by DM1 
Criteria 

C1 C2 C3 C4 C5 
Supplier 

S1 4 3 2 6 8 
S2 7 2 4 7 4 
S3 8 3 2 5 6 
S4 6 4 4 8 9 
S5 7 5 3 6 5 

Table 4. Evaluation matrix by DM2 
Criteria 

C1 C2 C3 C4 C5 
Supplier 

S1 6 2 3 7 5 
S2 7 3 3 8 6 
S3 8 4 2 6 7 
S4 7 2 4 5 8 
S5 7 4 2 6 7 

Table 5. Evaluation matrix by DM3 
Criteria 

C1 C2 C3 C4 C5 
Supplier 

S1 7 2 3 8 6 
S2 8 4 2 7 7 
S3 7 3 4 6 6 
S4 8 2 3 7 8 
S5 6 3 4 5 5 

Table 6. Aggregated evaluation matrix  
Criteria 

C1 C2 C3 C4 C5 
Supplier 

S1 [4.88,6.39] [2.11,2.55] [2.44,2.88] [6.50,7.50] [5.61,7.11] 

S2 [7.11,7.55] [2.5,3.50] [2.5,3.5] [7.11.7.55] [4.88,6.39] 

S3 [7.44,7.88] [3.11,3.55] [2.22,3.11] [5.44,5.88] [6.11,6.55] 

S4 [6.50,7.50] [2.22,3.11] [3.44,3.88] [5.88,7.38] [8.11,8.55] 

S5 [6.44,6.88] [3.50,4.50] [2.50,3.50] [5.44,5.88] [5.22,6.11] 

Min/Max Max Min Min Max Max 

Best [7.44,7.88] [2.11,2.55] [2.44,2.88] [7.11,7.55] [8.11,8.55] 
Worst [4.88,6.39] [3.50,4.50] [3.44,3.88] [5.44,5.88] [4.88,6.39] 

In order to develop the corresponding metamodel, five supplier selection criteria are 
treated as the input variables, whereas, the computed MABAC score is the output 
variable. To represent the two-level combinations for these five input variables, a 25 
full-factorial design plan having 32 experiments is proposed in Table 7 while 
considering only the worst and best rough intervals of each input variable in the 
experiment plan. Now, employing Eqs. (12)-(15), the corresponding value of 
definitive distance for each of the rough intervals is computed, as shown in Table 8. 
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For example, in case of criterion C1, the geometric aggregation is given as:  

 +−= 111 ,)( fffRN  
where 41.6)44.650.644.711.788.4( 5/1

1 ==−f  and 

 .22.7)88.650.788.755.739.6( 5/1

1 ==+f  

Table 7. 25 full factorial design plan with rough intervals of the considered criteria   

Experiment 
No. 

Factor level 
C1 C2 C3 C4 C5 

1 [7.44,7.88] [2.11,2.55] [2.44,2.88] [7.11,7.55] [8.11,8.55] 
2 [4.88,6.39] [2.11,2.55] [2.44,2.88] [7.11,7.55] [8.11,8.55] 
3 [7.44,7.88] [3.50,4.50] [2.44,2.88] [7.11,7.55] [8.11,8.55] 
4 [4.88,6.39] [3.50,4.50] [2.44,2.88] [7.11,7.55] [8.11,8.55] 
5 [7.44,7.88] [2.11,2.55] [3.44,3.88] [7.11,7.55] [8.11,8.55] 
6 [4.88,6.39] [2.11,2.55] [3.44,3.88] [7.11,7.55] [8.11,8.55] 
7 [7.44,7.88] [3.50,4.50] [3.44,3.88] [7.11,7.55] [8.11,8.55] 
8 [4.88,6.39] [3.50,4.50] [3.44,3.88] [7.11,7.55] [8.11,8.55] 
9 [7.44,7.88] [2.11,2.55] [2.44,2.88] [5.44,5.88] [8.11,8.55] 

10 [4.88,6.39] [2.11,2.55] [2.44,2.88] [5.44,5.88] [8.11,8.55] 
11 [7.44,7.88] [3.50,4.50] [2.44,2.88] [5.44,5.88] [8.11,8.55] 
12 [4.88,6.39] [3.50,4.50] [2.44,2.88] [5.44,5.88] [8.11,8.55] 
13 [7.44,7.88] [2.11,2.55] [3.44,3.88] [5.44,5.88] [8.11,8.55] 
14 [4.88,6.39] [2.11,2.55] [3.44,3.88] [5.44,5.88] [8.11,8.55] 
15 [7.44,7.88] [3.50,4.50] [3.44,3.88] [5.44,5.88] [8.11,8.55] 
16 [4.88,6.39] [3.50,4.50] [3.44,3.88] [5.44,5.88] [8.11,8.55] 
17 [7.44,7.88] [2.11,2.55] [2.44,2.88] [7.11,7.55] [4.88,6.39] 
18 [4.88,6.39] [2.11,2.55] [2.44,2.88] [7.11,7.55] [4.88,6.39] 
19 [7.44,7.88] [3.50,4.50] [2.44,2.88] [7.11,7.55] [4.88,6.39] 
20 [4.88,6.39] [3.50,4.50] [2.44,2.88] [7.11,7.55] [4.88,6.39] 
21 [7.44,7.88] [2.11,2.55] [3.44,3.88] [7.11,7.55] [4.88,6.39] 
22 [4.88,6.39] [2.11,2.55] [3.44,3.88] [7.11,7.55] [4.88,6.39] 
23 [7.44,7.88] [3.50,4.50] [3.44,3.88] [7.11,7.55] [4.88,6.39] 
24 [4.88,6.39] [3.50,4.50] [3.44,3.88] [7.11,7.55] [4.88,6.39] 

25 [7.44,7.88] [2.11,2.55] [2.44,2.88] [5.44,5.88] [4.88,6.39] 

26 [4.88,6.39] [2.11,2.55] [2.44,2.88] [5.44,5.88] [4.88,6.39] 

27 [7.44,7.88] [3.50,4.50] [2.44,2.88] [5.44,5.88]] [4.88,6.39] 
28 [4.88,6.39] [3.50,4.50] [2.44,2.88] [5.44,5.88] [4.88,6.39] 
29 [7.44,7.88] [2.11,2.55] [3.44,3.88] [5.44,5.88] [4.88,6.39] 
30 [4.88,6.39] [2.11,2.55] [3.44,3.88] [5.44,5.88] [4.88,6.39] 
31 [7.44,7.88] [3.50,4.50] [3.44,3.88] [5.44,5.88] [4.88,6.39] 
32 [4.88,6.39] [3.50,4.50] [3.44,3.88] [5.44,5.88] [4.88,6.39] 

Based on Eq. (14), as [7.44,7.88] > [6.41,7.22], the definitive distance for the best 

interval of C1 can be estimated as ( ) ( )( ) 865.022.788.741.644.7
2

1 22
=−+−=D . 

Similarly, as [4.88,6.39] < [6.41,7.22], the definitive distance for the worst interval of 

C1 can be calculated as ( ) ( )( ) .231.122.739.641.688.4
2

1 22
−=−+−−=D  
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Table 8. Definitive distance matrix along with the MABAC scores 

Experiment 
No. 

C1 C2 C3 C4 C5 
MABAC score 

1 2 
1 0.865 0.696 0.355 0.928 1.960 0.345 0.345 
2 -1.231 0.696 0.355 0.928 1.960 0.124 0.135 
3 0.865 -0.998 0.355 0.928 1.960 0.184 0.174 
4 -1.231 -0.998 0.355 0.928 1.960 -0.037 -0.036 
5 0.865 0.696 -0.704 0.928 1.960 0.215 0.220 
6 -1.231 0.696 -0.704 0.928 1.960 -0.006 0.010 
7 0.865 -0.998 -0.704 0.928 1.960 0.054 0.049 
8 -1.231 -0.998 -0.704 0.928 1.960 -0.167 -0.161 
9 0.865 0.696 0.355 -0.771 1.960 0.239 0.235 

10 -1.231 0.696 0.355 -0.771 1.960 0.018 0.025 
11 0.865 -0.998 0.355 -0.771 1.960 0.078 0.064 
12 -1.231 -0.998 0.355 -0.771 1.960 -0.143 -0.146 
13 0.865 0.696 -0.704 -0.771 1.960 0.109 0.110 
14 -1.231 0.696 -0.704 -0.771 1.960 -0.112 -0.100 
15 0.865 -0.998 -0.704 -0.771 1.960 -0.052 -0.061 
16 -1.231 -0.998 -0.704 -0.771 1.960 -0.273 -0.271 
17 0.865 0.696 0.355 0.928 -0.797 0.256 0.254 
18 -1.231 0.696 0.355 0.928 -0.797 0.035 0.044 
19 0.865 -0.998 0.355 0.928 -0.797 0.095 0.083 
20 -1.231 -0.998 0.355 0.928 -0.797 -0.126 -0.127 
21 0.865 0.696 -0.704 0.928 -0.797 0.126 0.129 
22 -1.231 0.696 -0.704 0.928 -0.797 -0.095 -0.081 
23 0.865 -0.998 -0.704 0.928 -0.797 -0.035 -0.042 
24 -1.231 -0.998 -0.704 0.928 -0.797 -0.256 -0.252 
25 0.865 0.696 0.355 -0.771 -0.797 0.150 0.144 
26 -1.231 0.696 0.355 -0.771 -0.797 -0.071 -0.066 
27 0.865 -0.998 0.355 -0.771 -0.797 -0.011 -0.027 
28 -1.231 -0.998 0.355 -0.771 -0.797 -0.232 -0.237 
29 0.865 0.696 -0.704 -0.771 -0.797 0.020 0.019 
30 -1.231 0.696 -0.704 -0.771 -0.797 -0.201 -0.191 
31 0.865 -0.998 -0.704 -0.771 -0.797 -0.141 -0.152 
32 -1.231 -0.998 -0.704 -0.771 -0.797 -0.362 -0.362 

Based on the procedural steps of MABAC method, the corresponding scores are 
computed for all the experimental trials using two different criteria weight sets. 
Thus, for each combination of factor levels, two MABAC scores are calculated at two 
replications. Assignment of different criteria weight sets results in different MABAC 
scores. This experimental design plan with definitive distance values as the inputs 
and MABAC scores as the responses is now analyzed using MINITAB (R17) software 
which results in subsequent development of the corresponding metamodal and 
analysis of variance (ANOVA) table. This metamodel in the following form can not 
only account for the main effects of different factors, but can also highlight the 
existent interactions among them. 
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   (23) 

where Y is the MABAC score, β0 is the intercept coefficient or overall mean response, 
βi is the main or first-order effect of factor i, βij

  
is the two-factor interaction between 

factors i and j (i ≠ j), βijk is the three-factor interaction between i, j and k (i ≠ j ≠ k), βijkl 
is the four-factor interaction between i, j, k and l (i ≠ j ≠ k ≠ l), and β12345 is the five-
factor interaction between all the factors.  

Table 9. Estimated effects and coefficients 

Term Effect Coefficient 
SE of 

coefficient 
t-value p-value 

Constant  -0.00597 0.00283 -2.11 0.043 
C1 0.21044 0.10522 0.00283 37.12 0.000 
C2 0.17106 0.08553 0.00283 30.18 0.000 
C3 0.12244 0.06122 0.00283 21.60 0.000 
C4 0.11306 0.05653 0.00283 19.94 0.000 
C5 0.08494 0.04247 0.00283 14.98 0.000 

C1×C2 -0.00506 -0.00253 0.00283 -0.89 0.379 
C1×C3 0.00506 0.00253 0.00283 0.89 0.379 
C1×C4 -0.00506 -0.00253 0.00283 -0.89 0.379 
C1×C5 0.00506 0.00253 0.00283 0.89 0.379 
C2×C3 -0.00506 -0.00253 0.00283 -0.89 0.379 
C2×C4 0.00506 0.00253 0.00283 0.89 0.379 
C2×C5 -0.00506 -0.00253 0.00283 -0.89 0.379 
C3×C4 -0.00506 -0.00253 0.00283 -0.89 0.379 
C3×C5 0.00506 0.00253 0.00283 0.89 0.379 
C4×C5 -0.0×0506 -0.00253 0.00283 -0.89 0.379 

C1×C2×C3 0.00506 0.00253 0.00283 0.89 0.379 
C1×C2×C4 -0.00506 -0.00253 0.00283 -0.89 0.379 
C1×C2×C5 0.00506 0.00253 0.00283 0.89 0.379 
C1×C3×C4 0.00506 0.00253 0.00283 0.89 0.379 
C1×C3×C5 -0.00506 -0.00253 0.00283 -0.89 0.379 
C1×C4×C5 0.00506 0.00253 0.00283 0.89 0.379 
C2×C3×C4 -0.00506 -0.00253 0.00283 -0.89 0.379 
C2×C3×C5 0.00506 0.00253 0.00283 0.89 0.379 
C2×C4×C5 -0.00506 -0.00253 0.00283 -0.89 0.379 
C3×C4×C5 0.00506 0.00253 0.00283 0.89 0.379 

C1×C2×C3×C4 0.00506 0.00253 0.00283 0.89 0.379 
C1×C2×C3×C5 -0.00506 -0.00253 0.00283 -0.89 0.379 
C1×C2×C4×C5 0.00506 0.00253 0.00283 0.89 0.379 
C1×C3×C4×C5 -0.00506 -0.00253 0.00283 -0.89 0.379 
C2×C3×C4×C5 0.00506 0.00253 0.00283 0.89 0.379 

C1×C2×C3×C4×C5 -0.00506 -0.00253 0.00283 -0.89 0.379 
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Table 9 shows the effects and coefficients of different factors along with their 
varied levels of interactions, while Table 10 exhibits the derived ANOVA results 
based on the calculated MABAC scores. These ANOVA results provide a summary of 
the main effects and interactions between various factors. In table 9, the p-values 
help in identifying statistically significant factors and interaction effects. Terms with 
p-value less than or equal to 0.05 are considered to be statistically significant, 
whereas, those with p-value greater than 0.05 can be neglected while developing the 
corresponding metamodeal. In this table, the column ‘Term’ depicts the main effects 
and all the possible interactions among the factors. The ‘Effect’ column shows the 
relative strength of a particular factor or interaction. The β coefficients and their 
standard errors (SE) are provided in the third and fourth columns respectively. The 
last two columns highlight the calculated t- and p-values. In Tables 9-10, the rows of 
all the significant factors (p ≤ 0.05) are shown in bold face. Based on the derived 
results, it can be concluded that all the two-way, three-way, four-way and five-way 
interactions are statistically insignificant, whereas, all the main effects due to criteria 
C1, C2, C3, C4 and C5 have independently significant contributions in calculating the 
MABAC score. Thus, the metamodel for obtaining the MABAC score for a given 
supplier based on the evaluation criteria can be expressed as below:  

Y = -0.00597 + 0.10522×C1 + 0.08553×C2 + 0.06122×C3 + 0.05653×C4 + 0.04247×C5

 (24) 

In Table 10, the R2 value is the square of correlation coefficient indicating the 
percentage of variation explained by the developed metamodel out of the total 
variation. On the other hand, the value of R2(adj) represents the proportion of 
variation in the target variable contributed by the statistically significant terms. It 
can be concluded that 99.07% of the variation in the dependant variable Y (MABAC 
score) can be explained by the variation of the independent variables in this 
metamodel. Extremely high values of both R2 and R2(adj) as 99.07% and 98.16% 
respectively thus confirm the acceptance of the developed metamodel in exhibiting 
the relationship between MABAC score and supplier selection criteria. 

Table 10. ANOVA results 
Source DoF Adj. SS Adj. MS t-value p-value 
Linear                5   1.73656   0.347311    675.46     0.000 
2-way 

interaction   
10 0.00410   0.000410      0.80     0.632 

3-way 
interaction   

10   0.00410   0.000410      0.80    0.632 

4-way 
interaction    

5 0.00205   0.000410      0.80     0.560 

5-way 
interaction    

1 0.00041   0.000410      0.80     0.379 

Error 32 0.01645 0.000514   
Total                  63 1.76367    

R2 = 99.07%, R2(adj) = 98.16% 

Now, based on this model, the corresponding MABAC scores for the five 
alternative suppliers are determined as Y1 = -0.0301, Y2 = 0.0746, Y3 = 0.0175, Y4 = 
0.1100 and Y5 = -0.1990 (where Yi is the MABAC score for ith supplier). When these 
MABAC scores are arranged in descending order, a complete ranking of the 
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competing suppliers from the best to the worst can be derived. Thus, S4 emerges out 
as the most competent supplier for providing gearboxes to the iron and steel 
industry under consideration, followed by suppliers S2 and S3. In the derived ranking 
list of the suppliers, S5 performs the worst. In Table 11, the rankings of the 
considered suppliers derived using rough-MABAC-DoE-based metamodel are 
contrasted with those obtained using rough-TOPSIS, rough-EDAS, rough-ARAS and 
rough-WASPAS-DoE-based metamodels. It can be revealed that except rough-EDAS, 
the ranking of the most favoured supplier (S4) matches for all the remaining rough-
MCDM-DoE-based metamodels. High Spearman’s rank correlation coefficients (rs) 
prove the application potentiality of rough-MABAC-DoE-based metamodel in solving 
supplier selection problems.  

Table 11. Comparison of rankings of the suppliers using different rough MCDM methods 
Supplier MABAC TOPSIS EDAS ARAS WASPAS 

S1 4 5 5 5 5 
S2 2 2 1 2 2 
S3 3 3 3 3 3 
S4 1 1 2 1 1 
S5 5 4 4 4 4 
rs - 0.90 0.80 0.90 0.90 

4. Conclusions 

This paper proposes a novel approach to solve a supplier selection problem in an 
Indian iron and steel industry while integrating rough numbers with MABAC method 
and DoE leading to the development of a metamodel. Its application starts with 
aggregation of the relative performance scores of five competing suppliers using 
rough numbers considering the uncertainty involved in the decision making process. 
Based on the worst and best rough number intervals, a 25 full-factorial experimental 
design plan is formulated with subsequent conversion of those rough intervals into 
the corresponding definitive distances. Using two different criteria weight sets as the 
replications, the related MABAC scores are computed for all the experiment trials. 
Finally, a metamodel is developed interlinking the MABAC scores and supplier 
evaluation criteria, which is finally employed to rank the competing suppliers. Its 
main advantage lies on easy computation of the performance score (in terms of 
MABAC score) for a new supplier to be included in the decision making process, thus 
relieving the decision maker from reinitiating the entire calculation from the scratch. 
Besides its application in iron and steel industry, it can also be efficiently employed 
in other sectors, like healthcare, tourism, food, textile etc. The possibility of similar 
hybridization with other MCDM techniques, like MARICA, MARCOS, combined 
compromise solution (CoCoSo) etc. for solving supplier selection problems can be 
explored as the future scope of this paper. Two sets of criteria weights are 
considered here based on the opinions of the decision makers, helping in replication 
of the MABAC scores. Other subjective methods, like BWM, FUCOM or LBWA can also 
be applied for estimating the corresponding criteria weights. The main limitation of 
the proposed approach is that its computational complexity would monotonically 
increase for high-dimensional decision making problems having large number of 
evaluation criteria. 
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