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Research paper 

Abstract: In this paper the classic known Multi Vehicle Routing Problem (VRP) is studied 
where classically several vehicles are set in a central depot, depending on the allocation 
strategy, each vehicle starts traveling to visit a set of nodes one after another to provide 
a service of gathering or delivering commodities with the aim of minimizing total 
traveling distances and costs. In the current paper, this classic problem is extended by 
new approach of AND/OR precedence constraints (PC) which have not been considered 
so far in the related literature. Traditionally, PC have been considered in VRPs as the 
'AND' type, where the immediate successor of a node cannot be visited until its 
predecessor nodes have reached their end of services. However by additional OR-type 
precedence constraints, there are some interconnected nodes through the concept of OR, 
therein no mandatory need to visit all predecessors of a successor node is acquired 
before it can be met, and only finishing a part of them can let to that particular node to 
get visited. This fact is widely observed in pickup and routing and distribution real cases 
where requisites for some specific products can be fulfilled via various potential 
suppliers. Implementation of this type of PC graph in VRP is considered as the first 
introduction and application in the category of this problem. So, initially, the problem is 
mathematically formulated, then, due to problem’s NP-hard complexity and allocation-
routing characteristics, a decomposition-based technique is utilized to solve the 
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problem. The procedure is based on recently enhanced Benders’ decomposition 
approach named as Branch and Search Algorithm, partitioning the original main 
problem into allocation and routing parts. Unlike the previous version of Benders 
algorithm, logic based, this newly promoted method acts in a way that at the allocation 
level, it generates partition of nodes with feasible solutions in lower routing level. The 
routing part itself has been enhanced by heuristics to cover AND/OR PC graphs. 
Furthermore, the efficiency of the proposed solution procedure is tested and verified by 
running on several generated problems in different sizes and in the larger scale it is 
implemented on the real case of a distribution company in Iran. 

Key words: Multi Vehicle Routing Problem, AND/OR precedence constraints, Hard Time 
Windows, Branch and Search Algorithm 

1. Introduction 

The Vehicle Routing Problem (VRP) is one of the most studied optimization 
problems and is considered with the optimal routes  to be designed by a fleet of 
vehicles to serve a set of customers (final users) (Golden, 2008). Since many papers 
have been devoted to the development of VRP, many variants of this problem have 
been presented by now. For example, the Capacitated VRP (CVRP), in which there is a 
homogeneous fleet of vehicles where the only constraint is the vehicle capacity, or the 
VRP with Time Windows (VRPTW), where customers are served in a specified time 
interval and the schedule of the vehicle trips should be determined. In this paper the 
new approach of AND/OR precedence relation type has implemented in the body of 
the classic routing problem. This new implementation will have effects on the 
traveling schedules and sequences which will lead to changes in processing times and 
consequently will affect on total time and cost of the whole task assignment and 
scheduling of travels. The rest of the paper will provide the literature of the previous 
studies in VRP that will clarify the changes and the effects of this new contribution of 
AND/OR precedence relationships on the classic routing problems which is the first 
time introduced in VRPs.   

Recently, much attention has been paid  to more complicated variants  of VRP, 
which are closer to the practical  distribution problems in the real world. Particularly, 
these variants  are characterized by multiple vehicle types, multiple trips, multiple 
depots or other operational concerns such as loading constraints (Toth & Vigo, 2002). 
For typical applications of this problem can mention to solid waste collection, school 
bus routing, dial-a-ride systems, street cleaning, transportation of handicapped 
persons/workers, routing of sellers/maintenance units. Among the various surveys 
on the VRP in the book by Toth and Vigo (Toth & Vigo, 2002).  

In VRP, the obtained routes must meet operational constraints based on the nature 
of the transported goods, the quality of service level, and the characteristics of 
customers and vehicles. Some typical operational constraints are the following: the 
load of each vehicle cannot exceed the vehicle capacity along each route; the customers 
can serve as delivery or collection of goods in a route, or both possibilities can exist; 
and customers can be served only in their time windows and the working times of 
associated vehicles’ drivers (Coelho, 2016).  
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Precedence constraints determines the order in which the customers should be 
served in a route. One type of precedence constraint needs that a given customer be 
served in the same route serving a given subset of other customers and that the 
customer must be visited before (or after) the customers belonging to the associated 
subset. This case is called pickup and delivery problems, wherein the routes can 
perform both the collection and delivery of goods, and the goods collected from the 
pickup customers must be carried to the corresponding delivery customers by the 
same vehicle. Another type of precedence constraint imposes that if different types of 
customers are served in the same route, the order in which the customers are visited 
is fixed. This situation is called VRP with Backhauls, wherein again, the routes can 
perform both the collection and delivery of goods (Zhang, 2017). 

This paper considers an important variant of the VRP, in which a fleet of vehicles 
with different capacities and costs distributes the goods between depots and 
customers. The problem is known as the Mixed Fleet VRP or as the Heterogeneous 
Fleet VRP, firstly considered in a structured way in Golden et al. (Golden, 1984). 

VRP is one of the major problems in transportation systems that arose from 
traveling salesman problem (TSP). The goal of TSP is to find the shortest tour among 
a given set of cities which salesman visited them based on the traveling costs. The 
solution of feasible assembly sequence of TSP based on the AND/OR precedence can 
be found by restricting the next city visited by the salesman. This condition was called 
the constrained TSP (Chen, 1990). Then, all feasible assembly sequences can be 
generated based on this concept of the constrained TSP (Chen, 1990, 1989, 1990). 

De Fazio et al. considered a simplified model and generated the precedence 
knowledge based on a series of AND/OR rules (De Fazio & Whitney, 1987). MÖhring 
et al. presented efficient algorithms to solve the general model of AND/OR precedence 
constraints (MÖhring, 2004). Donald et al. applied AND/OR precedence constraints to 
assign scheduling tasks according to minimal length schedules (Gillies, 1995). 
AND/OR precedence constraints have been utilized for scheduling jobs by Donald et 
al. then two heuristic algorithms were applied to schedule AND/OR task systems and 
minimize completion time. Finally, the worst-case performance of these algorithms 
was analyzed by them (Gillies, & Liu, 1990). Möhring applied a linear-time algorithm 
to deduce additional AND/OR precedence constraints (MÖhring, 2004). Sanghyup et 
al. considered a flexible job-shop scheduling problems with AND/OR precedence 
constraints and developed genetic and Tabu search algorithms to solve it (Lee, 2012). 

One type of the most important problems in variant of the VRP is multi vehicle 
routing problem with time windows (MVRPTW) that has been noticed by many 
researchers and distribution company managers, due to its wide application in urban 
transportation. In this area, Dong et al. consider a multi-objective VRP with time 
windows and used a tissue P system based on evolutionary algorithm (Dong, 2018). 
Anggodo et al. used a genetic algorithm to optimize a multi-trip VRP with time 
windows on the problems of the tourist routes in Banyuwangi (Anggodo, 2017). 
Ghoseiri et al. presented a new model and solution for multi-objective VRP with time 
windows. They used goal programming and genetic algorithm to solve it (Ghoseiri & 
Ghannadpour, 2010). Chungyu et al. used a hybrid heuristic algorithm to solve multi-
vehicle and multi-depot vehicle routing problem with time windows (Chunyu & 
Xiaobo, 2010). Ariyani et al. used a hybrid method called GA-SA to solve a multi-trip 
vehicle routing problem with time windows (Ariyani, 2018). 

https://www.sciencedirect.com/topics/engineering/genetic-algorithm
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The literature of exact method shows that the usage of exact method has been 
scarce.  MVRPTW with exact solution approaches can be found in the related literature 
rarely. For example, the branch and price algorithm was one of exact methods which 
Hernandeza et al. used to solve multi-trip VRP with time windows. The presented 
method was the first exact solution approaches for this important problem 
(Hernandeza, 2016). Goel et al. considered a multi-objective VRP and solved it by 
improved multi ant colony algorithm (Goel & Maini, 2021). This method isn’t an exact 
solution approach. Cӧmert et al. used a hierarchical approach consisting of two stages 
as cluster-first route-second to solve a vehicle routing problem with soft time window 
(Cӧmert ,2017). Cetin et al. surveyed a VRP with hard time windows wherein pickup 
and delivery is simultaneous (Cetin & Gencer, 2010). 

The branch and price algorithm was presented for multi-trip VRPTW by 
Hernandez et al. (Hernandez, 2016). Also, an exact hybrid method as combining a 
branch-price-and-cut (BPC) algorithm was used to solve the VRPTW by Alvarez et al. 
wherein deliverymen had been considered multiple (Alvarez & Munari, 2017). 
Parragh et al. considered the truck and trailer VRPTW and used a branch and price 
and adaptive large neighborhood search. A vehicle routing problem with a 
heterogeneous fleet and time windows was introduced by Jiang et al. They used the 
Tabu search algorithm to solve it. Presented VRPTW by Miranda et al. considered 
stochastic travel and service time (Jiang, 2014). A meta-heuristic method was applied 
to solve the vehicle routing problem with time windows by Bouthillier et al. (Le 
Bouthillier & Crainic,2005). Nazif et al. applied a genetic algorithm to solve vehicle 
routing problem with time windows (Nazif & Lee, 2010). A multi objective vehicle 
routing problem with time windows has been considered by Chiang & et al. they used 
an evolutionary algorithm to solve it (Chiang & Hsu, 2014). Bae et al. surveyed a multi-
depot vehicle routing problem with time windows wherein delivery and installation 
vehicles was considered (Bae & Moon, 2016). Wang considered a hybrid swarm 
optimization genetic algorithm to solve vehicle routing problem (Wang, 2015). Kumar 
et al. considered a time-dependent VRP with time windows and solved it using a 
genetic algorithm as one of meta-heuristic methods (Kumar & Panneerselvam, 2015). 
Pierre et al. solved a VRP with time windows using a genetic algorithm (Pierre & 
Zakaria, 2016). Koc et al. developed heterogeneous fleet vehicle routing problems with 
time windows then utilized a hybrid evolutionary algorithm to solve it (Koc, 2015). 
Dabia applied a Branch and price as an exact method to solve a vehicle routing 
problem with time windows (Dabia, 2013). Azi et al. applied an exact algorithm and 
solved the VRPTM wherein multiple use of vehicles had been considered (Azi, 2010). 
Mingozzi et al. presented an exact method to solve the multi-trip vehicle routing 
problem. Their computational results indicated that the proposed exact algorithm can 
solve MTVRP (Mingozzi, 2013). Hernandez et al. solved the multi-trip vehicle routing 
problem with time windows by presentation a branch and price algorithm 
(Hernandez, 2016). Hernandez et al. presented an exact two-phase algorithm to solve 
the multi-trip vehicle routing problem with time windows and limited duration, 
wherein first phase considered possible ordered lists of clients based on the maximum 
trip duration criterion. And the second phase utilize a Branch and Price algorithm to 
generate and choose a best set of trips so that all customers are visited (Hernandez, 
2014).  
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The previous researches are summarized in Table 1. By examining the frequency 
of methods presented in previous researches and the tendency to achieve an accurate 
and optimal solution, conducting research using exact methods will be felt. Since 
recently several studies have focused on exact method, in this paper will apply a 
branch and search algorithm to solve MVRPTW. 

Table 1. A classification of VRP in the recent literature 
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A new exact algorithm to solve the multi-trip vehicle 
routing problem with time windows and limited duration 
(Hernandez, 2014) 

    

Branch-and-price algorithms for the solution of the multi-
trip vehicle routing problem with time windows 
(Hernandez, 2016) 

    

An exact algorithm for the multi-trip vehicle routing 
problem (Mingozzi, 2013) 

    

An exact algorithm for a vehicle routing problem with time 
windows and multiple use of vehicles (Azi, 2010) 

    

Branch and price for the time-dependent vehicle routing 
problem with time windows (Dabia, 2013) 

    

A hybrid evolutionary algorithm for heterogeneous fleet 
vehicle routing problems with time windows (Koc, 2015) 

    

A knowledge-based evolutionary algorithm for the multi 
objective vehicle routing problem with time windows 
(Chiang & Hsu, 2014) 

    

Optimized crossover genetic algorithm for vehicle routing 
problem with time windows (Nazif & Lee, 2010) 

    

A cooperative parallel meta-heuristic for the vehicle routing 
problem with time windows (Le Bouthillier & Crainic, 
2005) 

    

The vehicle routing problem with hard time windows and 
stochastic travel and service time (Miranda & Conceição, 
2016) 

    

An exact hybrid method for the vehicle routing problem 
with time windows and multiple deliverymen (Alvarez & 
Munari, 2017) 

    

Vehicle routing problem with a heterogeneous fleet and 
time windows (Jiang, 2014) 

    

Branch-and-price and adaptive large neighborhood search 
for the truck and trailer routing problem with time 
windows (2017) 

    

Branch-and-price algorithms for the solution of the multi-
trip vehicle routing problem with time Windows 
(Hernandez, 2016) 

    

A new approach for solution of vehicle routing problem 
with hard time window (Cӧmert ,2017) 

    
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Improved Multi-Ant-colony algorithm for solving Multi-
Objective Vehicle Routing Problems (Goel & Maini, 2021) 

    

Branch-and-price algorithms for the solution of the multi-
trip vehicle routing problem with time windows 
(Hernandeza, 2016) 

    

   Hybrid Genetic Algorithms and Simulated Annealing for 
Multi-trip Vehicle Routing Problem with Time windows 
(Ariyani, 2018) 

    

  Research on multi-vehicle and multi-depot vehicle routing 
problem with time windows electronic commerce (Chunyu 
& Xiaobo, 2010) 

    

Multi-objective vehicle routing problem with time windows 
using goal programming and genetic algorithm (Ghoseiri & 
Ghannadpour, 2010) 

    

Optimization of multi-trip vehicle routing problem with 
time windows using genetic algorithm (Anggodo, 2017) 

    

A tissue P system based evolutionary algorithm for multi-
objective VRP with Time Windows (Dong, 2018) 

    

A time-dependent vehicle routing problem with time 
windows for e-commerce supplier site pickups using 
genetic algorithm (Kumar & Panneerselvam, 2015) 

    

As we can see and study in the literature of VRP, we could not find any paper 
referring to implementation of AND/OR precedence constraints in the problem 
structure. However, we can see this type of relationships in the real situations and 
industries in which ignoring this fact will result in not optimized assignments and 
sequences that will lead to more costs to industry owners. In this study, this approach 
is introduced and it is tried to clarify these costs. Due to the huge complexity of the 
problem, a hybrid general algorithm is designed and proposed to handle the problem.  

This paper is structured as follows. Multi-Trip Vehicle Routing Problem with hard 
Time Windows (MVRPTW) problem with AND/OR-Type precedence constraints is 
explained in section 2. In section 3, developed algorithms to solve the considered 
problem is described in detail. Section 4 presents the computational experiments in 
which the results obtained by proposed algorithm. Finally, Section 5 is devoted to 
conclusions and recommendations for future research. 

2. Problem Description and Mathematical Formulation 

2.1. AND/OR-MTVRPTW 

In this section, the AND/OR Multi-Trip Vehicle Routing Problem with hard Time 

Windows (AND/OR-MTVRPTW) problem is described and formulated in a mixed-
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integer linear programming model. The problem is generally based on the well-known 
Vehicle Routing Problem with Hard time Windows with more similarity to very 
familiar Pickup and Delivery type which has got many attentions in last recent years 
and there are huge numbers of accomplished and running competing studies, focusing 
on optimum node visit scheduling and permutations in the routes. 

One of the contributions of this paper is to applying a new form of PC arc into VRPs, 
as an important factor in scheduling, which has resulted in more complex problems 
but with the better cost-oriented outcome. To the best of authors’ knowledge, this 
issue has not been considered so far in the history of VRPs. This type of 
synchronization has existed in the real VRP problems, but in most cases, it’s denied or 
simplified by forcing it to change into an AND-type PC arc. So, in order to make the 
benefit of considering AND/OR PC arcs, the main and the first point is to identify the 
synchronizations with OR-type characteristics and making them group together with 
linked OR-arcs. Finally, implementing the developed mathematical model and 
algorithms would lead to time and cost benefits for companies to deal with this kind 
of problem. When the details of the problem are clarified as following, more details 
will be illustrated that how it will end up with better results.   

As mentioned before, the problem deals with traveling of a limited number of 
vehicles along with the geographically scattered nodes/customers in order to deliver 
products or serve a service. According to Li & Lim benchmark web page (Li & Lim, 
2008), the first priority goal is to minimize the number of used vehicles and the second 
priority is to minimize the total traveled distances of vehicles. The position of each 
node is declared as a point on the XY − 𝑝𝑙𝑎𝑛𝑒 and the distances between nodes are 
calculated by using Cartesian coordinates 𝐴(𝑥1, 𝑦1) and 𝐵(𝑥2, 𝑦2). All vehicles start 
their travels at the time zero on the first trip (𝑝1) from the depot (𝑛0) and are allowed 
to have several trips. Each trip starts from the depot and ends to the depot. All vehicles 
are the same and are limited by maximum capacity restrictions which must not be 
exceeded in every trip of the particular vehicle. The program of traveling should be 
planned in a way that at the end of the travels, all nodes/customers must be visited 
once, not more, not less. Each customer has its own time window for taking service, 
declared as [EarlyTime𝑖 , LateTime𝑖] which means that it would not accept 
service/delivery before or after its determined window. Thus, if a vehicle reaches a 
node at a time before EarlyTime, it must wait until that time window opens. Also, it is 
clear that received after 𝐿𝑎𝑡𝑒𝑇𝑖𝑚𝑒 is prohibited. 

The above descriptions are the basic conditions of a VRPTW problem, except for 
the multi-trip part. The maximum allowed trip number for every vehicle had been 
fixed at one. But in this paper, in order to get more harmony with our considered 
problem, vehicles are allowed to do multi trips in which maximum of trip numbers are 
bounded. In the following, the considered AND/OR synchronization constraints are 
clarified. 

By application of AND/OR synchronization constraints, permutations would lead 
to change, consequently, every cost function which is derived by or dependent on 
sequences will be affected.  

There are two types of PC arcs that are assumed as AND-type and OR-type. The 
first type refers to classic precedence relationships defined as linked arc from 𝑖 to 𝑗 
(𝑖 → 𝑗), in which 𝑖 is the precedence of 𝑗 that must be completely processed prior to 𝑗. 
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In some new versions, the restriction on completely has been changed and limitations 
on finishing precedence task have been reduced. In general, in the literature of the 
VRPs, only the first type has been considered. As it was mentioned, in some cases, 
various types of network graphs with different levels of restrictions have extended 
and formed. The most well-known type of PC is found in pickup and delivery VRPs 
where nodes are linked as a pair by an AND-type arc. The pickup node has the 
precedence role and the delivery node has the successor role in which the pickup one 
must be completely processed before reach the delivery one. In this paper, this type of 
synchronization is considered as an AND-type PC arc where there is no restriction to 
put an AND-type pair into a single same vehicle anymore. 

To better illustrate this difference, according to our considered problems, there are 
no pickup and delivery services, but still, there are a kind of limitations in which some 
specific nodes in the same route, should have been visited before their pairs. So, there 
is no obligation to put an AND-type pair into a single same vehicle and they are free to 
be serviced individually by any vehicle. But if both paired nodes determined to be 
visited by the same vehicle, PC must be implemented and it would make them met the 
precedence relationship constraint. 

This approach would lead to higher complexity of the problem. In fact, when the 
problem consists of N nodes and K vehicles, where all nodes are paired, it deals with 
the allocation of 𝑁 ⁄ 2  nodes into 𝐾 vehicles. However, by eliminating the same 
vehicle restriction of paired nodes, by allocating N nodes into K vehicles, the 
complexity of the problem will be doubled. 

Furthermore, the second OR-type PC arc has also considered in this study where it 
is counted as the first implementation of OR-type arc in VRPs. This PC arc is 
implemented when starting a process is dependent to other processes. It is defined for 
tasks with multiple predecessors where finishing of only one predecessor would let 
the successor could start its process. In many real industrial cases, because of the 
simplicity or due to Lack of knowledge and awareness of the subject, they were 
mistakenly considered as AND-type arcs. Forcing and restricting a set of processes into 
limited options which were led to detrimental consequences, losing potential better 
scheduling alternatives. For an example, consider a subset of nodes 𝐴, 𝐵 and 𝐶 in a 
routing problem with 𝑁 nodes and node 𝐶 as a successor linked to nodes 𝐴 and 𝐵 by 
AND-type arcs. Assume that in a practical condition, visitation of node 𝐶 could start its 
process by either completion of service to 𝐴 or 𝐵. Besides, assume that the distance 
between 𝐵 and 𝐶 is relatively large compared to the distance between 𝐴 and 𝐶. So, 
according to the classic formation of AND arcs, both nodes of 𝐴 and 𝐵 must be visited 
prior to 𝐶 even if its final permutation lead to worse traveling costs. But if both of them 
were initially defined as OR-type, the order of serving node 𝐵 could be moved to any 
further sequence after visiting node 𝐶. Thus, by these newly opened alternatives they 
could have resulted in at least better outcomes in terms of traveling costs. 

With all the above interpretations, it is now easier to understand that how would 
consider the OR-type pc arcs in a vehicle routing problem could bring benefit to a 
company. It can widen the alternatives by providing more open space with possible 
better options for the decision makers.  This can lead to more efficient plans with 
better outcomes. In the following, the introduced problem is mathematically modeled 
used notations are declared. 
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2.2. Mixed-Integer Mathematical model  

In this section the problem is mathematically formulated and the used notations 
and variables are declared. Further assumptions of the problem are assumed as 
following: 

• There are 𝑁 customer nodes plus the node depot as Node 0. 
• Each customer has a demand that must be supplied by the unique vehicle. 
• Each customer must be visited only once. 
• Either AND or OR-type arcs are implemented when linked pairs assigned to be 

visited by the same vehicle. 
• Each node has a fixed value of service time. 
• No stochastic parameter or input data is considered. 
• Preemption or interruption is not allowed 
• Vehicles’ speeds are equal to one unit.  
• Every route is traveled with single vehicle and includes multi trips each starting 

from the depot and ending to the depot. 

Following introduces notations and their corresponding definitions: 

𝑖, 𝑗, 𝑡 Indexes for all nodes 

𝑘, 𝑠, 𝑟 Index of vehicle 

𝐾 Maximum number of available vehicles 

𝑝, 𝑛 Index of a trip in a route 

𝑁 Number of all nodes 

𝐷𝑖𝑠𝑖 𝑗 Distance between node 𝑖 and 𝑗 

𝐷𝑖 Demand of node 𝑖 

𝐶𝑜𝑠𝑡 Cost of using a vehicle 

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 Maximum capacity of a vehicle 

𝑃 Maximum number of Allowed trips 

Service𝑖 Service time on node 𝑖 

EarlyTime𝑖 Lower bound for time window of node 𝑖. 

LateTime𝑖 Upper bound for time window of node 𝑖. 

𝑉𝑘 A binary variable indicating use of vehicle 𝑘. 

𝑥𝑖 𝑗 𝑛 𝑘 A binary decision variable indicates visit of node 𝑗 immediately after 
node 𝑖 at trip 𝑛 by vehicle 𝑘. 

𝑧𝑖 𝑛 𝑘 A binary variable indicating assignment of node 𝑖 on trip 𝑛 by vehicle 𝑘. 

𝑆𝑡𝑖 𝑘 Start time of servicing to node 𝑖 by vehicle 𝑘. 

𝐶𝑜𝑛 𝑘 Reach time to node depot after finishing trip 𝑛 by vehicle 𝑘. 

𝑦𝑖 𝑗 𝑘 A binary variable that indicates if visiting of node 𝑖 occurred earlier 
than node 𝑗 by vehicle 𝑘. 

The mathematical model is developed as follows: 
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minimize 𝑂𝑏𝑗 = ∑ 𝑥𝑖 𝑗 𝑛 𝑘 ∙ 𝑑𝑖𝑠𝑖 𝑗

𝑖 𝑗 𝑛 𝑘

+ ∑ 𝑉𝑘 ∙ 𝑐𝑜𝑠𝑡

𝐾

𝑘=1

 (1) 

𝑉𝑘 ≥ 𝑧0 1 𝑘 
(2) 

𝑉𝑘 ≥ 𝑉𝑘+1 
(3) 

𝑧𝑖 𝑛 𝑘 = ∑𝑥𝑖 𝑗 𝑛 𝑘

𝑗

= 1          𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 , 𝑛, 𝑘 (4) 

𝑧𝑗 𝑛 𝑘 = ∑𝑥𝑖 𝑗 𝑛 𝑘

𝑖

= 1             𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗, 𝑛, 𝑘         (5) 

𝑦𝑖 𝑗 𝑘 + 𝑦𝑗 𝑖 𝑘 ≥ [(∑𝑧𝑖 𝑛 𝑘

𝑛

+ ∑𝑧𝑗 𝑛 𝑘

𝑛

) − 2] ∙ BigM + 1        𝑖 ≠ 𝑗 ≠ 0 
(6) 

𝑦𝑖 𝑗 𝑘 + 𝑦𝑗 𝑖 𝑘 ≤ 1            𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 ≠ 0, 𝑗 ≠ 0, 𝑘  
(7) 

∑𝑦𝑖 𝑗 𝑟 + 𝑦𝑗 𝑖 𝑟

𝑟

≤ [2 − (∑𝑧𝑖 𝑛 𝑘

𝑛

+ ∑𝑧𝑗 𝑛 𝑠

𝑛

)] ∙ BigM        𝑖 ≠ 𝑗 ≠ 0 
(8) 

𝑆𝑡𝑗 𝑘 ≥ 𝑆𝑡𝑖 𝑘 + servic𝑖 + (𝑦𝑖 𝑗 𝑘 − 1) ∙ BigM 
(9) 

∑ 𝑦𝑖 𝑗 𝑘

𝑖 ∈ 𝑜𝑟⃗⃗ ⃗⃗ 𝑗

≥ [∑(𝑧𝑡 𝑛 𝑘 + 𝑧𝑗 𝑛 𝑘)

𝑛

] − 1         𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 𝑂𝑅⃗⃗ ⃗⃗  ⃗ 𝑗,  (10) 

∑𝐷𝑖 ∙ 𝑧𝑖 𝑛 𝑘

𝑖

≤ 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (11) 

𝑆𝑡𝑗 𝑘 ≥ 𝑆𝑡𝑖 𝑘 + servic𝑖 + 𝐷𝑖𝑠𝑖 𝑗 +  (𝑥𝑖 𝑗 𝑛 𝑘 − 1) ∙ BigM 
(12) 

∑𝑥𝑖 𝑗 𝑛 𝑘

𝑗

− ∑𝑥𝑗 𝑖 𝑛 𝑘

𝑗

= 0      𝑓𝑜𝑟 𝑖 = {0,1,2, . . , 𝑁} (13) 

𝑆𝑡𝑗 𝑘 ≥ 𝑆𝑡𝑖 𝑘 + Service𝑖            𝑓𝑜𝑟 𝑖 ∈ 𝑖 𝐴𝑁𝐷⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗ 𝑗 
(14) 

𝐶𝑜𝑛 𝑘 ≥ 𝑆𝑡𝑗 𝑘 + Service𝑗 + 𝑑𝑖𝑠𝑗 0 + (𝑥𝑗 0 𝑛 𝑘 − 1) ∙ BigM 
(15) 

𝑆𝑡𝑗 𝑘 ≥ 𝐶𝑜𝑛 𝑘 + 𝑑𝑖𝑠0 𝑗 +  (𝑥0 𝑗 𝑛+1 𝑘 − 1) ∙ BigM 
(16) 
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𝑆𝑡𝑖 𝑘 ≥ EarlyTime𝑖 
(17) 

𝑆𝑡𝑖 𝑘 ≤ LateTime𝑖 
(18) 

Equation (1) presents the objective function of minimizing travel cost which 
includes traveling distance related costs and vehicles using costs. By giving a very big 
positive value to 𝑐𝑜𝑠𝑡, model gives a first priority to minimize the total number of used 
vehicles. Constraints (2) and (3) show the usage of vehicle  𝑘. Equations (4) and (5) 
indicate assignment of nodes 𝑖 and 𝑗 to route 𝑘. Constraints (6), (7) and (8) indicate 
that if two nodes are in the same route of a vehicle, variable 𝑦 will take value and one 
node will be serviced sooner and one another, later. In other words, if two individual 
nodes are assigned to two different routes, no sequence relationship is defined 
between those two. Constraint (9) synchs starting times to visiting orders. Constraint 
(10) is developed in order to declare OR-type precedence relationship. It defines that 
if node 𝑗 is linked by a set of OR-type predecessors, servicing of only one member of 
them, those who are in the same route with node 𝑗, is adequate to let the successor 𝑗 to 
be visited. Constraint (11) limits the vehicle’s capacity. Constraint (12) assigns starting 
times for nodes in a route which are visited consecutively. Equation (13) declares that 
every node in a route has one input and one output. Constraint (14) shows AND-type 
relationships. It is clear that every node 𝑖 which is paired with a successor node 𝑗 in a 
route 𝑘 must be visited prior to  𝑗. Constraints (15) and (16) make a link between 
completion time of a trip in a route and start time of the first customer in next trip. At 
the end, constraints (17) and (18) implement the hard time window restrictions. 

3. Developed Algorithms 

3.1. General Scheme 

In this section, our developed algorithm is introduced. The applied algorithm’s 
general scheme is completely new and it is based on the integration of rules, random 
search and a new intelligent Large Neighborhood Searching technique which is 
entirely fit to VRP problems. Also, in the inner layers of the algorithm, the latest 
heuristic algorithms’ key implementations, well-known meta-heuristics like 
Simulated Annealing and Tabu search are also considered. Moreover, in order to make 
use of Genetic Algorithms’ wide diversity characteristics, some solution pools are 
created to avoid losing elite solutions.  

The challenging part in the VRP problems with hard time windows is the feasibility 
check. In many studies of the literature, the complexity of problem makes researchers 
to use mathematical models to check the feasibility of every generated solution. Since 
it consumes the most part of computational time and it will become more complex by 
adding AND/OR precedence arcs, the performance of any presented algorithm will be 
affected. Therefore to overcome this challenge, a new solution has been proposed in 
this paper, and the use of mathematical models has been greatly limited, and rule-
based techniques have been used instead. Entire process of the developed algorithm 
is presented as follows. 

The general procedure of the algorithm starts by a heuristic rule OR_ENH_HEU 
which generates a feasible solution, considering two main factors of using maximum 
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capacity and minimum traveling costs. Then, the obtained solution goes through two 
different techniques called Parent and Child in order to eliminate vehicles those are 
recognized as bad allocations. Next, the remained bad allocations’ routes and their 
belonging nodes are eliminated from the solution and are transferred to stack.  

Afterwards, some techniques are applied along the algorithm in order to add 
stacked nodes as rule-based adding, randomly adding and randomly substitutions 
with the aim of reconstructing a complete solution with minimum cost. Hence, 
according to the strategy beyond the minimizing vehicles, it is called drop and add. 

Furthermore, the algorithm deals with two searching techniques, the local search 
and the intelligent Large Neighborhood Search called intllLNS from now on. The local 
search itself includes two different perturbation methods MOV_PERTURB and 
REP_PERTURB where tabu movements and Simulated Annealing approaches are 
implemented there.  

The intllLNS procedure is completely novel and acts based on the characteristics 
of the nodes in the same route. It evaluates their geographical positions and also 
creates time zones according to same routed nodes’ early and late times. Then the 
large numbers of intelligent movements or replacements are done based on the initial 
evaluations.  

One of the useful advantages of the developed algorithm is its solution pool which 
is active any time a solution is generated. It determines whether a new feasible 
solution be admitted to the pool or not. This option helps to avoid losing diversity and 
also keep holding elite solutions.   

Another advantage of this algorithm is that vehicles can always be removed along 
the local search and intllLNS. This is possible due to the elimination approach that is 
embedded in all stages of the algorithm. By means of this approach while a feasible 
solution with fewer vehicles is produced, then there is no chance to get back to former 
worse allocations. This obligation is implemented due to the high priority of 
minimizing number of vehicles. Additionally, at the end of every iteration, the Child 
procedure is performed to be certain about the minimum possible number of vehicles. 
it is clear that Child would not guarantee optimum number of vehicles but it does some 
attempts to minimize it as much as possible based on the rules, allocations and 
sequences provided by the whole process. The proposed algorithm is named as Hybrid 
AND/OR Intelligent Large Neighborhood Search algorithm called as HAOR_intLNSA. 
Its’ general scheme is interpreted in the following flowchart in Figure 1. 
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READ_DATA

CALCULATE_NODE_DISTANCES
FORMAT OR_ARCS

FORMAT AND_ARCS

OR_ENH_HEU

PARENT

CHILD

ADD_NODES_TO_STACK
ELIMINATE_EMPTY_VEHICLES

LOCAL_SEARCH
(LS)

IS_STACK_EMPTY?

ADD_TO_SOLUTION
_POOL

YES

RAND_ADD_FROM_STACK
RAND_SUBS_BY_STACK

IS_STACK_EMPTY?

NO

END_LS?

YES

intllLNS

YES

NO

IS_STACK_EMPTY?

RAND_ADD_FROM_STACK
RAND_SUBS_BY_STACK

YES

ADD_VEHICLE

NO

ADD_TO_SOLUTION_POOL

IS_STACK_EMPTY?
ADD_STACK

_ALL

NO

CHILD

YES

CHILD

NO

  

Figure 1. HAOR_intLNSA flowchart 

The pseudocode of the main function of the HAOR_intLNSA is presented in Figure 2. 
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  main () {
READ_DATA();
Calculate_Distances();
Format_Arcs();

OR_ENH_HEU();

PARENT();

CHILD();
ADD_TO_STACK();

NEW_CYCLE:

LOCAL_SEARCH(){
int LS_iteration = 0;
do {  
int rand_number = rand ();
if (rand_number < perturb_orient_percentage) {
TYPE_1_PERTURB();   }
else { 
TYPE_2_PERTURB();

}
 
if (IS_STACK_EMPTY) {

sort_pool();
consider_new_solution();

}
else{

rand_add_from_stack();
rand_subs_by_stack();
}
LS_iteration++;
} while (LS_iteration < MAX_LS_iter);

} //local search end;
intllLNS () {

int LNS_iteration = 0;
do () {
int lns_rand_number = rand ();
if (lns_rand_number < intllLNS_orient_percentage) {
TYPE_1_intllLNS();   }
else { 
TYPE_2_intllLNS();

}
 
if (IS_STACK_EMPTY) {

sort_pool();
consider_new_solution();

}
else {

rand_add_from_stack();
rand_subs_by_stack();
}

 LNS_iteration++;
}while (LNS_iteration < MAX_LS_iter);

} // intllLNS end;
 

if (IS_STACK_EMPTY) {
if (is_terminal_condition_met){

sort_pool();
CHOOSE_BEST_POOL_MEMBER();

} //algorithm finishes here
else {

goto  NEW_CYCLE;
}

}
else {

add_vehicle();
 //try to add all stacks into all available routes

add_stack_to_all() {
one_by_one_add();
if (succeed_adding) {

sort_pool();
consider_new_solution();
goto NEW_CYCLE;

}

}  

} //end of else;

} //main end;

 
Figure 2. HAOR_intLNSA pseudocode 
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3.2. OR_ENH_HEU 

HAOR_intLNSA starts by a heuristic rule which at the end of its process, it 
generates one feasible solution. This solution is constructed with focus on late times 
as first priority and then traveling distance as second priority. OR_ENH_HEU starts 
assignments of nodes to routes through a step-by-step procedure. At each step a set of 
candidates (𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑆𝑒𝑡) is setup, and then every individual node from this set is 
tested by adding to current solution which its feasibility is evaluated through a rule-
based feasibility checking process. Candidates who successfully pass the evaluation 
stage will be included in the final set of candidates called as 𝑁𝑜𝑚𝑖𝑛𝑒𝑒𝑆𝑒𝑡. At final step, 
the nearest node to the last positioned node in the current solution is admitted as new 
assignment. Finally, the 𝐶𝑎𝑛𝑑𝑖𝑑𝑒𝑆𝑒𝑡 are updated and all members in 𝑁𝑜𝑚𝑖𝑛𝑒𝑒𝑆𝑒𝑡 are 
eliminated. This procedure continues until all nodes have been assigned to routes.   

At the beginning of the rule, number of input OR-Type arcs of each node 𝑖 (if any) 
is held in variable 𝑂𝑅𝑝𝑟𝑒[𝑖]. Then the 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑆𝑒𝑡 is reconstructed at the beginning 
of assignment for every new route, considering 𝑂𝑅𝑝𝑟𝑒[𝑖] in which all nodes with no 
input OR arc (𝑂𝑅𝑝𝑟𝑒[𝑖] == 0) will be included in the CandidateSet. The reason beyond 
this action is to give more option and chance for OR-predecessor nodes to assign. 
Because fixing an OR-Type successor node before any of its predecessors in a route 
would not let any of its predecessors to assign to that route.   

Step 1: Declare variables for all 𝑖  𝑂𝑅𝑝𝑟𝑒[𝑖] = 0;  
 Declare variable ℎ𝑜𝑙𝑑𝑒𝑟 = 0 ;  
               Declare 𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑁𝑢𝑚𝑏𝑒𝑟 = 0 ; 
               for all 𝑖 ≠ 0 Declare 𝑖𝑠𝑉𝑖𝑠𝑖𝑡𝑒𝑑[𝑖] = 0 ; 
Step 2:  for all 𝑖, if (𝑂𝑅𝑝𝑟𝑒[𝑖] == 0 &&𝑖𝑠𝑉𝑖𝑠𝑖𝑡𝑒𝑑[𝑖] ==
0)  𝑇ℎ𝑒𝑛 add 𝑖 to CandidateSet ; 
Step 3:  𝐢𝐟 ( 𝐹𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦𝐶ℎ𝑒𝑐𝑘 (𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑆𝑒𝑡(𝑖) ) ==
𝐭𝐫𝐮𝐞 )𝑡ℎ𝑒𝑛 add 𝑖 to NomineeSet ; 
               𝐢𝐟 (𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑆𝑒𝑡 == ∅) 𝑡ℎ𝑒𝑛 𝐠𝐨𝐭𝐨 Step 6; 
Step 4:  𝐢𝐟 (𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑆𝑒𝑡 ≠ ∅ &&𝑁𝑜𝑚𝑖𝑛𝑒𝑒𝑆𝑒𝑡 == ∅)  𝑡ℎ𝑒𝑛 {𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑁𝑢𝑚𝑏𝑒𝑟 +
+;  

ℎ𝑜𝑙𝑑𝑒𝑟 = 0;  𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑆𝑒𝑡 = ∅ ;  𝐠𝐨𝐭𝐨 Step 2; } 
                
Step 5:  𝐢𝐟 ( Min distance ==  𝑑𝑖𝑠[ℎ𝑜𝑙𝑑𝑒𝑟][𝑁𝑜𝑚𝑖𝑛𝑒𝑒𝑆𝑒𝑡(𝑖)]) 

 𝑡ℎ𝑒𝑛 {ℎ𝑜𝑙𝑑𝑒𝑟 = 𝑖 ; 𝑖𝑠𝑉𝑖𝑠𝑖𝑡𝑒𝑑[𝑖] = 1; }  
              for all 𝑖  𝐢𝐟 (𝑝𝑐 (ℎ𝑜𝑙𝑑𝑒𝑟 → 𝑖) == 𝑂𝑅𝑇𝑦𝑝𝑒) 𝑡ℎ𝑒𝑛 { 𝑂𝑅𝑝𝑟𝑒[𝑖] − −; 

𝐢𝐟 (𝑖𝑠𝑉𝑖𝑠𝑖𝑡𝑒𝑑[𝑖] == 0)add 𝑖 to 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑆𝑒𝑡 ; 
                                                           } 

              for all 𝑖  𝐢𝐟 (𝑝𝑐 (𝑖 → ℎ𝑜𝑙𝑑𝑒𝑟 ) == 𝐴𝑁𝐷𝑇𝑦𝑝𝑒)  
              𝑡ℎ𝑒𝑛 {remove 𝑖 from 𝑁𝑜𝑚𝑖𝑛𝑒𝑒𝑆𝑒𝑡 ;   𝐠𝐨𝐭𝐨 Step 2; }  
Step 6: End; 
 

Figure 3. Pseudocode of OR_ENH_HEU 

After each successful assignment, 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑆𝑒𝑡 should be updated where newly 
assigned node will be eliminated. Then it will be checked that whether the assigned 
node is an AND-Type successor or not. If it is AND-Type successor, then its paired 
predecessor will be removed from 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑆𝑒𝑡. Also, if assigned node is an OR-Type 
predecessor of node 𝑖, then 𝑂𝑅𝑝𝑟𝑒[𝑖] =  𝑂𝑅𝑝𝑟𝑒[𝑖] − 1. Also, node 𝑖 will be added to 
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𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑆𝑒𝑡 for the current route since one of its predecessors has been finished 
already in that route.  Finally, the general procedure of OR_ENH_HEU rule is 
interpreted as pseudocode in Figure 3.  

One of the advantages of HAOR_intLNSA is the application of a rule-based 
feasibility check since it takes much less computational time than the used application 
of mathematical models. The procedure of this rule is declared in following section. 

3.3. Rule-based feasibility check 

According to the described procedure of generating feasible solutions, the rule is 
doing core job of creating complete route. Whenever the feasibility of a node is 
checked, the rule determines the visiting order of all allocated nodes in the route. 
Then, it checks feasibility in the aspects of AND/OR precedence relationships, number 
of trips and time windows. Next, it returns constructed route along with a true or false 
value in the case of feasibility or infeasibility. 

The core logic of this rule is based on the giving priority to nodes with earlier late 
times. This simple but efficient rule is implemented repeatedly in classic VRP and 
single machine scheduling problems dealing with due dates (Hu, 2018),( Gordon, 
1997) and its efficiency is proved already. Due to the extended aspects of the in-
handed problem and its high complexity, simple sorting of nodes would not be a cost-
efficient work, because it might be losing a high number of feasible solutions due to its 
weak created order of visits in the route. So, all assigned nodes in a specific route are 
determined in a permutation of visiting order one by one where in each step, noted 
constraints are tested.  

Since the rule checks all aspects of feasibility, it will not lead to return a true 
feasible feedback in contrast with mathematical model, but it is still possible to lose 
some mathematically feasible solutions. Regarding this issue, two conditions are 
defined that if rule falls the route into the following two categories, it will not return 
directly a decision on feasibility. The first one is a condition in which all nodes are 
visited in their time windows and all precedence constraints are met but the number 
of trips exceeds the predetermined upper bound. In this case, the considered 
assignment is sent to check by mathematical model and the model’s feedback is 
referred as feasibility status. The second one refers to a condition in which the number 
of trips is in bound and precedence relations are met but time window restrictions are 
violated. In this situation, first, feasibility of time window restrictions is checked under 
a completely hypothetical condition without capacity constraints with one trip. If an 
assignment successfully passes feasibility check, then a shifting method is applied in 
order to check possible feasibility of initial formed route. It acts in a way that if forward 
trip consists of lower capacity usage than former trip, shifting replaces last ordered 
node from former trip into forward trip and then it checks if this action lead to feasible 
route. Shifting iterates until find a feasible route but if all possible shifting 
replacements are done and no feasible route is found, then rule returns final false 
decision of feasibility.  

The initial application of the simple rule-based feasibility check was led to weak 
results where it was losing lots of feasible solutions. But by evaluations of differences 
between mathematical and rule’s created routes, it’s found that embedding of above 
introduced novel revising methods could bring a significant improvement. So, one of 
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the most important weaknesses in the application of rule-based feasibility check has 
been largely eliminated. Since computational time of an algorithm is one of the most 
prominent factors on deciding an algorithm, using rule-based methods will 
considerably reduce computational time.  

3.4. Removing inefficient routes 

After creating a feasible solution, HAOR_intLNSA sets up the routes in order to 
drop those vehicles with low consisting nodes. By dropping the vehicles, their 
belonging nodes are transferred to stack and they remain there until find a good 
assignment to re-enter them into the solution. 

Before this elimination occurs, the algorithm does some attempts to move the 
nodes which are belonged to the targeted routes, into the rest. It should be noted that 
the targeted routes are diagnosed by means of an input parameter, 𝑚𝑒𝑎𝑛𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, 
indicating a level for the number of nodes in a route. Thus, all routes under 
the 𝑚𝑒𝑎𝑛𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 are included in the target set.  

The algorithm continues with two steps before that elimination happens. The first 
step is called 𝑃𝑎𝑟𝑒𝑛𝑡 in which for all nodes in targeted routes, their chances of 
assignment in the rest routes are tested. This checking for possible movement starts 
from the nearest route and ends to the farthest one and in the meantime anywhere it 
leads to a feasible solution, checking for that node ends and the movement is done.  
After ending 𝑃𝑎𝑟𝑒𝑛𝑡, there might still some nodes remain in the targeted routes, so, 
the algorithm continues with a uniting approach in Step 2 called 𝐶ℎ𝑖𝑙𝑑. It tries to unite 
sporadic nodes. For this aim, the 𝐶ℎ𝑖𝑙𝑑 iteratively moves nodes into other feasible 
routes among the targeted routes. These movements repeat until no better 
movements are possible in the aspect of the number of empty routes.  

After the above steps, the targeted routes will be updated since it might some 
changes in the number of nodes in routes have occurred during 𝑃𝑎𝑟𝑒𝑛𝑡 and 𝐶ℎ𝑖𝑙𝑑. 
Then, newly diagnosed targeted routes are eliminated and their belonging nodes are 
transferred to stack in a process called 𝐴𝑑𝑑𝑇𝑜𝑆𝑡𝑎𝑐𝑘.  

By ending the process of elimination and 𝐴𝑑𝑑𝑇𝑜𝑆𝑡𝑎𝑐𝑘, the algorithm enters into 
the cycle part, starting with a local search approach to find neighbors with possible 
better solutions. In this paper, two types of perturbation strategies are applied which 
are defined and described in the following section.   

3.5. Local Search 

In this paper, two types of perturbation approaches are implemented as local 
search. The first type is a well-known perturbation method which has used 
consecutively in the literature. In this type, two randomly selected nodes from the 
randomly selected route are marked in order to be replaced by two randomly selected 
nodes of the randomly destined route. If this replacement ends up with an acceptable 
result, it will be done but if not, then the action is considered tabu. 

This tabu consideration might use memory, however it avoids wasting 
computational time by blocking repetition. Furthermore, In order to widen the search 
space, the same strategy as Simulated Annealing is implemented. The sum of travel 
cost of the route of origin and the destination route, before replacement, is compared 
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to the sum of costs for both after replacement. By setting up an acceptable range, the 
resulted replacements might be done even though the latter costs are worse than the 
initial ones. This range has determined by an input parameter called 𝑆𝑎𝑅𝑎𝑡𝑒, by a 
value bigger than 1.   

The second type of perturbation is a novel movement approach that moves nodes 
instead of replacement. The logic of this perturbation is to consider the elimination of 
vehicles as much as possible. When a movement perturbation occurs, that selected 
node might be the last member of that route, so by transferring it, the origin vehicle 
will be useless and automatically will be removed from the solution. It should be noted 
that all movements during the algorithm proceeding have arranged in a way that only 
occurs between routes that are not empty. 

In order to move a single node to another active route, the feasibility of this 
movement and also the resulted cost difference between the former and after 
movement, will be considered. Although the route of origin is selected randomly, the 
destination route is not. The movement of that particular selected node goes through 
a complete test in all other active routes. At last, the elite route which has led to the 
highest improvement in cost will be selected to transfer. The same tabu and 𝑆𝑎𝑅𝑎𝑡𝑒 
related strategies, which are used in the first type, are considered in this type of 
perturbation, too. 

Every time a perturbation occurs and a complete feasible solution is produced, it is 
checked for entering into the provided solution pool. The pool is embedded with the 
aim of storing elite solutions.  It is limited in the size which is determined by a 𝑝𝑜𝑜𝑙𝑆𝑖𝑧𝑒 
parameter. A solution should meet two conditions to get into the pool. First, its cost 
should be different from those solutions which are already stored in the pool. Besides, 
its cost should be less than the last member of the pool.  

Next, if this admission process is successful, then the whole pool will be re-sorted 
based on solutions’ cost values. This whole procedure is called 
 𝐶𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑁𝑒𝑤𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛.  

Finally, because there are probabilities of resulting with some empty vehicles, the 
final solution of this step is reconstructed and all routes are rearranged, with a new 
label of numbers, in order to completely remove those empty routes which are 
remained between active ones. 

3.6. Add from stack 

There are three kinds of methods, which are developed in order to pick nodes from 
the stack and add them into solutions, or to replace them. These picking efforts are 
embedded at different parts of the algorithm, during, and after perturbing, during, 
before, and after intelligent LNS and after adding a new vehicle.  

The first type iteratively selects a random node from the stack and tries to embed 
it into a randomly selected route. This type is called 𝑎𝑑𝑑𝐹𝑟𝑜𝑚𝑆𝑡𝑎𝑐𝑘. The second type 
which is called 𝑆𝑢𝑏𝑆𝑡𝑎𝑐𝑘 , attempts to substitute a random node of a random route 
with a random node of the stack. It does this replacement if that substitution leads to 
a better cost function. At last, the type 𝑆𝑡𝑎𝑐𝑘𝑇𝑜𝐴𝑙𝑙 tries to vacate the stack pool, by 
testing every individual member of the stack into all routes. These three methods are 
partially embedded inside the local search as well as intllLNS. 
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In search-based optimization algorithms, it is logical to design some techniques to 
diversify the search space due to avoiding trapping in local optima. In this paper, a 
novel procedure is developed which its details are clarified in the next section. 

3.7. Intelligent Large Neighborhood Search 

In many of large neighborhood search algorithms, it is usual to see big changes at 
once since a large group of individuals are decided randomly to alteration. In the 
AND/OR MTVRPTW there are restrictions in which group random alterations would 
lead to high number of infeasibilities due to two types of precedence relationships, 
decisive time windows and capacity of the vehicles in trips. Although this type of LNS 
has seen in the literature of PDPTW, decision to do randomly large perturbations 
would not be an adroit action.  

 For this reason, in this paper, two approaches are developed to perform LNS. Both 
of them are designed based on the problem’s main characteristics. They will remove a 
bunch of infeasible or inefficient moves. Instead, they will act in an intelligent way by 
setting up an elite group. This group consists of nodes that have a high probability to 
fit in destined routes, which might lead to better solutions.   

The approach focuses on the geographical position of nodes in a route on XY-Plane. 
At the first step, it gathers information of each route’s traveling costs and defines an 

index as 𝑐𝑜𝑠𝑡𝐼𝑛𝑑𝑒𝑥 =
𝑡𝑟𝑎𝑣𝑒𝑙𝐶𝑜𝑠𝑡𝑘

𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑁𝑜𝑑𝑒𝑠𝑘
 for all routes of a solution.  Lower values of this 

index, indicates that the corresponding vehicle of the route travels reasonable 
distance compared to the number of customers it must visit. Consequently, the higher 
of this index, shows inappropriate allocation, in which the vehicle might be able to 
carry out more customer visitations along that traveled distance. According to this 
defined index, all routes of a solution are sorted from high values to low. Next, random 
nodes from a set of candidates are selected to transfer to those routes which are at the 
top of the sorted list with high values of index. For setting a group of candidates, the 
proposed LNS acts in an intelligent way by finding a set of nodes which are seem to be 
appropriate choices to transfer to specific routes. Due to this action, many of the 
random choices and vain attempts with low probability of success perturbation will 
be eliminated. In order to clarify this action, see Figure 4. It is a sample of a route for a 
vehicle which should visit 6 customers in two trips. In this Figure, it is clear that nodes 
A and B would not be appropriate choices for entering to route 𝑘 concerning the aspect 
of traveling costs. On the other side, nodes C and D seems to be more fit. In order to 
discern and distinguishing these set of appropriate and inappropriate nodes, intllLNS 
performs a rule. Based on this rule, for each route a center point in XY-plane is 

calculated as 𝑋𝑐𝑒𝑛𝑡𝑒𝑟𝑘=
∑ 𝑋𝑖 𝑖∈𝑘

𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑁𝑜𝑑𝑒𝑠𝑘
  , 𝑌𝑐𝑒𝑛𝑡𝑒𝑟𝑘=

∑ 𝑌𝑖 𝑖∈𝑘

𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑁𝑜𝑑𝑒𝑠𝑘
  , then by means of 

this center point and the radius equal to 𝑑𝑖𝑠[𝑐𝑒𝑛𝑡𝑒𝑟][𝑓𝑎𝑟𝑡ℎ𝑒𝑠𝑡 𝑛𝑜𝑑𝑒 𝑖𝑛 𝑘], a circular 
zone is determined. Every node inside this zone is included in the candidate set of that 
particular route, as seen in Figure 4.  
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As aforementioned, first approach of intllLNS considers cost indexes and it tries to 
add nodes from other routes or stack into targeted route. As explained, this set of 
targeted routes are marked from the top part of the list which this part is determined 
by a ratio between [0, 1] where it is fixed as an input parameter called 𝑖𝑛𝑡𝑙𝑙𝑅𝑎𝑡𝑒. 

The second approach of intllLNS considers idle times in a route. Idle time is defined 
as the time between actual reaching time of a vehicle to a node and the early time of 
that node. In fact, when a vehicle reaches a node at a time before the time window, it 
should wait until that time window opens. This time gap is considered as idle time. In 
this approach, all gaps of a route are cumulated and considered as idle time index and 
the maximum occurred gap along with its starting and ending points are considered 
as a label on that route. Then, the routes in a solution are sorted according to this index 
from top to down. All routes in the top part of the list have more idle times.  

Same as the first approach, a set of candidate nodes is created. In this case, those 
nodes in which their time windows are inside the duration of the maximum gap of the 
route are included in the candidate set of that route. Finally, as same as first approach, 
intllLNS iteratively runs and repeats above operations until the maximum number of 
allowed iterations are met. According to above explanations, the pseudo code of the 
intllLNS is proposed as following in Figure 5. 

Finally, after the intllLNS and adding from stack operations, the algorithm checks 
if the stack is empty or not. If stack is still not empty, then a new vehicle is added to 
the solution. A full procedure of OR_ENH_HEU rule for a single vehicle is implemented, 
in order to construct a complete feasible route, considering nodes in the stack. After 
this final step of the cycle, another attempt is done called  𝐴𝑑𝑑𝑇𝑜𝐴𝑙𝑙, which as 
mentioned before, tries to vacate the stack pool by testing all individual nodes in all 
active routes. 
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Step 1: For all routes calculate CostIndex(𝑘); 
                                     CIOrder = SortRoutes (𝐶𝑜𝑠𝑡𝐼𝑛𝑑𝑒𝑥); 
Step 2: For all routes calculate IdleTimeIndex(𝑘); 
                                     ITOrder = SortRoutes (𝐼𝑑𝑙𝑒𝑇𝑖𝑚𝑒); 
Step 3: If (rand
< PintllOrient) { For all routes in top of CIOrder SetCandid(𝐶𝑖𝑟𝑐𝑙𝑒𝑍𝑜𝑛𝑒(𝑘)); 
                                                                                                                 SelectRandNode(𝑆𝑒𝑡𝐶𝑎𝑛𝑑𝑖𝑑(𝑖)); 
                                                                                                                 checkMove(𝑖, 𝑘); 
                                      𝑖𝑛𝑡𝐼𝑡𝑒𝑟 + +; } 
Step 4: If (rand
≥ PintllOrient) { For all routes in top of ITOrder SetCandid(𝑀𝑎𝑥𝐺𝑎𝑝(𝑘)); 
                                                                                                                SelectRandNode(𝑆𝑒𝑡𝐶𝑎𝑛𝑑𝑖𝑑(𝑖)); 
                                                                                                                 checkMove(𝑖, 𝑘); 
                                       𝑖𝑛𝑡𝐼𝑡𝑒𝑟 + +; } 
 Step 5: If (𝑖𝑛𝑡𝐼𝑡𝑒𝑟 < MaxLNSIteration) 

                                               {   If(IsStackEmpty){ AddfromStack (𝑗, 𝑘);   SubsStack(𝑗, (𝑖, 𝑘)); } 

                                                    goto Step 1; }        
             else        end; 
 

Figure 5. intllLNS Pseudocode 

4. Computational Experiments  

In this chapter of the paper, the performance of both developed mathematical 
model and HAOR_intLNSA heuristic algorithm is tested through experiments on well-
known benchmark instances of Li and Lim(Li & Lim, 2008). Since the exact 
implementation of these instances would not fit to our introduced problem, some 
modifications have been made to them. Besides, minimum size of the instances found 
in the literature begins with the size of 100 nodes. Due to the resulted high complexity 
of AND/OR-MTVRPTW, Proposed MILP model would not be able to optimally solve 
these instance sizes in a reasonable computational time. Our experiments using MILP 
model show no optimal solution even after 3 days for an instance with 100 sizes in 
which at the best case, it could reach to 39% gap from the lower bound. Therefor these 
limitations make us to do some modifications on standard set of benchmarks of Li and 
Lim in the aspect of problem characteristics as well as problem sizes (Li & Lim, 2008). 
The details are clarified in following sub-section.     

4.1. Data Generation 

As it was mentioned, the minimum size found in standard PDPTW begins with 100 
nodes, and we should note that in the PDPTW nodes are paired in a way that they 
cannot be served by separate vehicles. This fact itself reduces the complexity of the 
problem where it practically solves allocation of 𝑁/2 sets into 𝑘 vehicles however in 
AND/OR-MTVRPTW the allocation of 𝑁 sets into 𝑘 vehicles are considered. Besides, 
dealing with multiple trips adds to the complexity of the base PDPTW problem. So, in 
order to evaluate the proposed model’s efficiency, set of small sized instances are 
derived, using standard instances with 100 nodes from all categories of LC_type_I, 
LC_type_II, LR_type_I, LR_type_II, LRC_type_I and LRC_type_II.  
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At the first step of this operation, all pickup nodes which have same position with 
their delivery pairs are eliminated. For better understanding of this action, if we pay 
more attention to the instances of Li and Lim (Li & Lim, 2008), we will find that in the 
existing examples, there are pairs of nodes that practically both pickup and delivery 
have occurred at the same node. So, the purpose of elimination here is related to this 
kind of pairs and it is implemented on the pickup parts. As a result of this operation, 
some nodes will be left alone, without any precedence connection. Then, a set of 
random nodes with their belonging pairs will be selected until the number of nodes in 
the set reaches to the targeted size.  

Afterwards, in order to build feasible OR arcs, for every AND designated arc from 
𝑖 to 𝑗 (𝑖 → 𝑗) we give a 50 percent chance to change into OR arc. Then, all resulted OR 
candidates (if any) are partitioned into sets in which the maximum number of included 
pairs in a set is determined by an input parameter called 𝑀𝑎𝑥𝑃𝑎𝑟𝑡. Finally, from all 
delivery part of the paired nodes in a set, a single one is randomly selected as OR arc 
successor which all pickup nodes will be connected to that selected successor as its OR 
predecessors. And the remained other delivery nodes got relief with none precedence 
connection.  

Consequently, by means of above described four step procedure, small sized 
instances are generated. Also, in order to generate larger sized instances, the first, 
third and the last steps of the proposed procedure are carried out. The entire trend of 
the used procedure is summarized in four steps as in Figure 6 and all generated 
instances are available in an attachment to this paper.   

Step 1: for all pickup  𝑖 and delivery 𝑗, if (𝑋(𝑖) == 𝑋(𝑗)&& 𝑌(𝑖) == 𝑌(𝑗)){ 

                                                                         eliminate(𝑖);   }  
Step 2: size = 0; PickRand(𝑖, 𝑗); size = size + 2; 
              if (𝑠𝑖𝑧𝑒 < 𝑆𝐼𝑍𝐸)   goto  Step 2; 

Step 3: for all 𝑖 𝐴𝑁𝐷⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗ 𝑗 , if (rand(t) < 50%)  𝑂𝑅𝑠𝑒𝑡𝐶𝑎𝑛𝑑𝑖𝑑 = (𝑖 → 𝑗);  
Step 4: for 𝑡 from 1 to 𝑇, { Partition(𝑂𝑅𝑠𝑒𝑡𝐶𝑎𝑛𝑑𝑖𝑑,𝑀𝑎𝑥𝑃𝑎𝑟𝑡);  

             DestinOR(t) = rand (𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦(𝑗));   

              for 1 to MaxPart    if (is_AND_arc_exist 𝑖 to 𝑗 ) creatOR (𝑖 𝑂𝑅⃗⃗ ⃗⃗  ⃗ DestinOR(t)) ; }    

 
Figure 6. Instance generating rule 

In the following section, all results of the experiments are provided that begins 
with a small sample example with complete explanation for the problem and the 
optimal result.  

4.2. Results and Discussions 

The introduced problem of AND/OR-MTVRPTW is new, so, any exact coincide 
could be found neither in the aspect of problem structure nor in the aspect of solution 
algorithms. Therefore, the performance of the HAOR_intLNSA is evaluated via 
comparisons against optimal solution of the proposed mathematical model for the 
small sized instances. Six categories of problems are considered in which in total, 24 
instances are derived by means of the rule explained in previous section. Furthermore, 
since there is not any gauge for testing the developed algorithm, it is decided to test 
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our algorithm by making some modification on Li and Lim (Li & Lim, 2008) well-
known set of instances. The instances and the proposed algorithm’s input parameters 
and conditions are arranged in a way that the final results could be compared in some 
aspects under the determined conditions. For this aim, at the first step, the demand 
requests are all set to a same positive unit number of 1. Because, there is no pickup 
and delivery services are considered in the introduced problem. Moreover, because 
the positive and negative values of the nodes’ demands in a vehicle neutralize each 
other, practically, the capacities of vehicles are ineffective. Thus, in the generated large 
instances, the maximum capacity is set to a value equal to the maximum number of 
nodes allocated in a vehicle according to the best solution found in the PDPTW 
benchmark. Since the demands are all set to 1 that’s why the number of nodes value is 
considered as the maximum capacity. The rest of information regarding the input 
parameters and conditions are provided along the tables of results.  

In the following it is tried to more clarify the introduced problem’s details and 
features by solving a small-sized sample instance. Then, the efficacy of the 
HAOR_intLNSA in small scales is testified through a set of comparisons against 
mathematical model’s optimal results. Furthermore, the performance of algorithm is 
checked by setting a set of comparisons including instances with 100, 200 and 400 
nodes in size. Then the obtained results are interpreted and the efficiency of the 
proposed methodology is discussed. 

 Suppose the following scattered nodes in 𝑋𝑌 − 𝑝𝑙𝑎𝑛𝑒 with 10 customer nodes and 
one depot in Figure 7 and with input data presented in Table 2. 

Table 2. Sample example data 

Node X Y Demand EarlyTime LateTime ServiceTime 
Depot 5 5 0 0 1000 0 

A 5 6 1 1 5 1 
B 6 6 1 3 7 1 
C 4 4 2 1 3 1 
D 8 8 2 8 13 1 
E 3 3 3 10 20 1 
F 12 12 1 10 20 1 
G 4 3 1 3 7 1 
H 7 6 1 5 8 1 
I 8 9 1 13 20 1 
J 10 10 2 7 15 1 

Positions of nodes and corresponding precedence constraints arcs are depicted in 
Figure 7. For this sample instance maximum number of allowed trips is 3 and the 
capacity of all vehicles is assumed 3.  

According to optimum solution achieved by mathematical model, the example is 
solved in total 5 trips. Three vehicles are used and all start their travels at the time 
zero. The first trip of first vehicle begins from depot, then the vehicle visits node A, B 
and H, next it returns to depot and then starts a further trip by visiting D, I and ends in 
depot. The second vehicle starts its first trip by visiting node C, then G and back to 
depot and continues its service by traveling to node J and F and finally ends travel in 
depot. The third vehicle carries out a single visitation of node E. 
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In this sample the concept of OR precedence relationship is clearly seen in V1_T1. 
First vehicle starts its trip by visiting A, then B, then node H, even though both nodes 
of A and H are the OR-type predecessors of node B. But since in the concept of OR-pc, 
the completion of only one of the predecessors are adequate to start the successor, this 
fact is implemented and node B is allowed to be visited after giving service to node A.   

In V1_T2 we see that the node D is visited prior to node I as designated by an AND-
type pc arc. The rest of precedence constraints have not met, because pairs have not 
assigned in the same vehicles.  

In the following the generated small sized instances are solved by mathematical 
model and the HAOR_intLNSA. All six categories of the bench-mark are considered and 
in total, 24 instances are generated. Because of the high complexity of the problem, the 
most cases of these small instances could not be solved optimally by math model in 
reasonable time. So, beside of these instances a set of so smaller feasible instances are 
also created by authors that their optimality are solved and proved by the solver. Table 
3 presents the detailed results of these experiments. It should be noted that the Mixed 
Integer Linear Model is written in C++ using Cplex 12.8 iLog Concert Technology. 
Experiments have done on a core i7 pc with 3.34 GHz CPU speed and 8 Mb of RAM.  

4.2.1. Parameters Setting 

According to the descriptions given about the procedure of the developed 
algorithm, there is a set of parameters that their values should be determined before 
the execution of the program. Due to this determination action, a full factorial design 
is implemented to extract the most effective and efficient parameter values. So, for 
each parameter a set of values are predetermined, evoked through initial test 
experiences. It is clear that we should take an instance(s) in order to apply the all 

Figure 7. Solution of Sample Example 

Precedence arcs: 

𝑪 𝑨𝑵𝑫⃗⃗⃗⃗ ⃗⃗⃗⃗ ⃗⃗   𝑬 

𝑮 𝑨𝑵𝑫⃗⃗⃗⃗ ⃗⃗⃗⃗ ⃗⃗   𝑬 

𝑫 𝑨𝑵𝑫⃗⃗⃗⃗ ⃗⃗⃗⃗ ⃗⃗   𝑰 

𝑭 𝑨𝑵𝑫⃗⃗⃗⃗ ⃗⃗⃗⃗ ⃗⃗   𝑰 

𝑱 𝑨𝑵𝑫⃗⃗⃗⃗ ⃗⃗⃗⃗ ⃗⃗   𝑰 

𝑨 𝑶𝑹⃗⃗⃗⃗⃗⃗  𝑩 

𝑯 𝑶𝑹⃗⃗⃗⃗⃗⃗  𝑩 
 
Customer ------- 
Depot ----------- 

 
X-axis 

Y-axis 

5 

5 
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design of experiments to decide of the parameters’ values. For this aim, we took two 
sample instances, one for small-size and the other as the representative for big-size 
instances. The size of the instances should be selected in such a way that their solving 
times are taken into account due to the high number of tests (3 × 2 × 1 × 3 × 3 × 2 ×
1 × 1 × 1 × 2 = 216). So, considering above mentioned conditions two instances with 
16 and 100 nodes are selected for small and big size instances, respectively. Table 3 
has given the set of parameters and their relevant values. The last two columns of 
Table 3 indicate decided value for each parameter for each group of instances.  

Table 3. Parameters setting of the developed algorithm 

Parameter Description Alternatives 
Small-

Size 
Big-
Size 

Pop_size Population size {1,20,50} 20 1 
Total_iteration Total iteration of the algorithm {100,500} 100 500 
LNS_Iteration Total iteration of LNS procedure {100} 100 100 

IntllRate A portion of the targeted vehicles {0.3, 0.5, 0.8} 0.3 0.3 

Perturb_orient 
A percentage to go to move or 

replace perturb 
{30%, 50%, 80%} 50% 50% 

Perturb_iter Total iteration of perturbation {100,500} 100 500 

LNS_orient 
A percentage to go to or replace 

perturb 
{50%} 50% 50% 

sub_stack 
Number of add from stack with 

substitute target 
{100} 100 100 

R_Add_stack 
Number of iterations to 

randomly add from stack 
{100} 100 100 

Acc_rate 

Simulated annealing rate in 
which solutions with this 

difference from earlier solution 
would be accepted 

{1.2,1.5} 1.2 1.2 

Making use of above arrangements the algorithm and the mathematical models are 
executed and obtained results are concluded in Tables 4 to 8. 

Table 4. Small-size instances results 
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7 6 3 4 2 2 28.2843 1 2 2 28.2843 2 2 10 0% 
8 6 3 4 3 2 36.0328 1 2 2 36.0328 2 2 7 0% 
9 6 3 4 2 3 53.8195 1 2 3 53.8195 2 3 15 0% 

10 6 3 4 4 2 48.3182 2 2 3 48.3182 2 3 12 0% 
11 6 3 4 2 5 39.7498 6 3 5 39.7498 3 5 10 0% 
12 6 3 4 2 5 82.0936 5 3 5 82.0936 3 5 11 0% 
13 6 3 4 2 5 127.327 55 4 6 127.327 4 6 20 0% 
14 6 3 4 4 5 193.604 239 4 7 193.604 4 7 18 0% 
15 6 3 4 5 5 196.379 212 4 6 196.379 4 6 20 0% 

16 6 3 4 6 5 346.967 225 5 8 346.967 5 8 24 0% 
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Instances in Table 4 are generated in a complete random manner with aim of 
producing feasible problems by authors. As shown in Table 4, mathematical model 
could reach to optimum solutions for all of these 10 instances. As seen the 
computational times have started to grow from the instance with size of 13. The 
efficiency of the proposed algorithm is clearly proved due to its performance on 
capability to optimum results in a small amount of computational time. Once the size 
of the problems grows to 21 nodes, it has come out that the mathematical model solver 
got in trouble and could not reach to optimality for a considerable portion of the 
instances, however, the proposed algorithm has resulted in reliable results. 

Table 5. Results for instances with medium size 
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LC101_21 6 3 4 6 4 375.17 0% 41 3 6 375.17 3 6 64 0 

LC102_27 6 3 4 7 5 603.50 40% 14430 5 - 483.23 4 8 70 
-

19.9% 
LC103_23 6 3 4 3 7 622.83 24.99% 68262 4 - 602.4 4 6 56 -3.2% 

LC104_21 6 3 4 3 6 524.30 33.34% 4078 3 - 408.68 3 5 57 
-

22.1% 
LC201_21 6 3 4 5 5 501.40 0% 21 2 6 503.04 2 6 69 0.3% 
LC202_21 6 3 4 5 5 436.35 33.29% 3836 3 - 477.54 2 6 54 9.4% 
LC203_21 6 3 4 7 3 450.54 0.5% 10493 2 - 458.21 2 6 68 1.7% 
LC204_21 6 3 4 6 4 457.74 0% 22324 2 5 457.74 2 5 40 0% 
LR101_21 6 3 4 3 7 459.84 0% 7 6 6 459.84 6 6 58 0% 
LR102_21 6 3 4 5 4 474.95 0% 892 4 6 474.95 4 6 24 0% 
LR103_21 6 3 4 3 7 - - 4309 - - 532.77 3 7 65 ** 
LR104_21 6 3 4 3 7 - - 4440 - - 520.21 3 8 37 ** 
LR201_21 6 3 4 3 7 417.43 0% 447 2 5 417.43 2 5 70 0% 
LR202_21 6 3 4 4 6 510 0.06% 4986 2 - 516.78 2 6 26 1.3% 
LR203_21 6 3 4 4 6 557.4 0.1% 3662 2 - 558.82 2 6 34 0.2% 
LR204_21 6 3 4 5 5 488.91 0.07% 4637 2 - 486.41 2 6 69 -0.5% 

LRC101_21 6 3 4 5 5 472.23 0% 259 5 5 472.23 5 5 43 0% 
LRC102_21 6 3 4 6 4 - - 3673 - - 468.88 5 5 48 ** 

LRC103_21 6 3 4 6 4 677.50 33.36% 3646 3 - 492.14 3 7 61 
-

27.3% 
LRC104_21 6 3 4 5 5 440.87 59.96% 57041 5 - 467.32 3 8 38 5.9% 
LRC201_21 6 3 4 3 7 507.53 0% 1895 2 5 507.53 2 5 53 0 
LRC202_21 6 3 4 2 8 600.05 0.1% 3666 2 - 600.05 2 6 116 0 
LRC203_21 6 3 4 5 5 672.23 33.36% 4807 3 - 605.56 2 6 32 -9.9 
LRC204_21 6 3 4 4 6 586.91 0.12% 8840 2 - 589.73 2 6 59 0.4 

Results in Table 5 show a complete superiority of the developed algorithm in 
comparison with exact mathematical model since it obtained better results for 
majority part of the instances. Three rows of Table 5 are in grey color. It should be 
noted that the mathematical results show difference from lower bound considering a 
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cost value for every vehicle used. For an example in case LC_202_21 it seems that the 
best found traveling cost function of mathematical model is better than the result of 
algorithm, however, we should note that the solution found by the algorithm resulted 
in lower number of vehicles. So to better evaluate the outcome, the numbers of the 
resulted used vehicles are also should be taking into account while evaluating the 
efficiency of the algorithm. 

Table 6. HAOR_intLNSA results for instances with size 100 
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LC101_100 47 10 3 14 881.65 6 148 
LC102_100 47 10 3 14 893.19 7 93 
LC103_100 48 9 3 14 1022.56 4 119 
LC104_100 47 9 3 14 780.77 4 80 
LC201_100 49 3 2 36 525.84 2 76 
LC202_100 49 3 2 36 568.47 2 104 
LC203_100 49 3 2 36 608.74 2 118 
LC204_100 49 3 2 36 545.37 2 97 
LR101_100 47 19 3 8 1576.68 13 140 
LR102_100 45 17 3 8 1203.11 11 78 
LR103_100 48 13 3 8 1375.58 6 92 
LR104_100 48 9 3 8 890.75 4 121 
LR201_100 49 4 2 28 1430.57 3 126 
LR202_100 50 3 2 38 1078 2 122 
LR203_100 49 3 2 47 899.46 2 80 
LR204_100 50 2 2 51 906.82 2 66 

As described before three instance groups are generated in order to evaluate the 
performance of proposed algorithm. The results of all three are gathered in Tables 6-
8. As described before, the arcs are produced and implemented in the problems. The 
total number of all AND and OR arcs are noted in the tables in front of each instance 
case. The maximum vehicle number for each instance is determined considering the 
best minimum found so far in the literature for the classic form of the problem.  and 
the total maximum allowed trips are considered randomly from the set of {2,3} giving 
more chance to value 3 (80%) for instances with max_vehicle more than 10 and giving 
more chance for value 2 for instances with max_vehicle number lower than 10.  

For each instance, best traveling cost objective value with obtained minimum 
number of vehicles are noted. Also, the computational time for each instance is also 
calculated in seconds and depicted in a separate column. 
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Table 7. HAOR_intLNSA results for instances with size 200 
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LC101_200 94 20 3 14 2456.98 14 296 
LC102_200 95 19 3 14 2555.21 14 240 
LC103_200 97 17 3 14 2870.66 12 223 
LC201_200 98 6 2 36 1796.59 5 299 
LC202_200 98 6 2 36 1840.47 5 266 
LC203_200 99 6 2 36 1867.14 5 226 
LR101_200 95 20 3 12 4400.31 16 232 
LR102_200 95 17 3 16 4733.81 13 214 
LR103_200 96 14 3 18 4179.17 11 264 
LR201_200 99 5 2 30 4101.25 5 223 
LR202_200 99 4 2 54 3711.68 4 238 
LR203_200 99 4 2 54 2846.28 4 238 

LRC1_301_200 94 19 3 12 3369.57 16 248 
LRC1_302_200 97 15 3 20 3559.85 12 284 
LRC1_303_200 95 13 3 24 3325.64 11 219 

Since the problem in its current form is accounted as a novel class of problem, so 
making comparisons with other authors proposed algorithms seems to be not suite 
for this case. Even re-coding of the algorithms developed in the history of VRP 
problems would not be a good choice to show the capability of the proposed algorithm. 
In this research authors did their best to make use of the methodologies which are 
derived from the most recent achievements in literature of the problem. Looking the 
body of the algorithm shows this fact that in the perturb process or simple LNS or 
simple feasibility check process we first applied the most used and claimed functions, 
then we did improvements and made considerable enhancements in each part. Also 
by introducing the new procedure for LNS we could obtain better results by 
eliminating time consuming recent procedures. Considering all of these there is one 
way to show the capability and efficiency of our proposed algorithm. By using 
predetermined values for capacity and maximum number of vehicles considering the 
bench mark and the data given in the Li and Lim (Li & Lim, 2008). The resulted 
traveling costs show a much about the performance of the algorithm. For example we 
took a look for the traveling costs of the instances in their classic form of the third 
group of instances with size 400.  As it is seen, obtained traveling costs by 
HAOR_intLNSA for the major part of instances are better than what were resulted 
before. Actually this is not a fair comparison since the form of precedence relations are 
changed and also trips options are added in these new instances which all lead to more 
alternatives. But it can at least show that HAOR_intLNSA is reliable algorithm for the 
introduced class of problem since it could reach to results as they are anticipated by 
widening the feasible space.  

This problem is new and very attractive with challengeable several aspects from 
developing exact algorithms to constructing search based fast solution techniques. 
And also it has resulted in a set of problems with very high complexity. Thus, authors 
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invite researchers and authors to do studies on this problem since it has lot to grow 
and progress. 

Table 8. HAOR_intLNSA results for instances with size 400 
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LC101_400 189 40 3 14 6805.55 29 370 7152.06 
LC102_400 189 38 3 14 8148.32 26 310 8007.79 
LC103_400 190 32 3 14 8264.86 25 345 8678.23 
LC201_400 197 12 3 38 4213.38 8 253 4116.33 
LC202_400 198 12 3 38 4071.44 8 340 4144.29 
LC203_400 197 12 3 38 4024.43 8 239 4401.08 
LR101_400 192 40 3 14 11032.72 32 396 10639.75 
LR102_400 191 30 3 17 10800.66 24 251 11009.51 
LR103_400 192 22 3 28 8763.18 17 245 9251.13 
LR201_400 199 8 3 50 8601.78 8 298 9726.88 
LR202_400 199 7 3 50 9233.86 7 246 9405.40 
LR203_400 198 5 3 50 9687.67 5 275 10282.01 

LRC1_301_400 192 36 3 15 8902.64 28 359 9124.52 
LRC1_302_400 191 31 3 15 8222.36 29 299 8346.06 
LRC1_303_400 194 24 3 18 7736.29 23 327 7805.16 

5. Conclusions and future research 

In this paper, AND/OR precedence constraints have introduced in the field of 
vehicle routing problems with the aim of minimizing total traveling distances and 
costs. This type of precedence relations has not been considered so far in the literature 
of VRPs. Although the nature of this type of precedence relations exists in the body of 
problem but in the real cases, it has ignored by the researchers. Therefore, this paper 
introduces this extension to that former problem for the first time as well as proposing 
a practical general hybrid optimization algorithm which is able to solve the medium 
and large size problems. By this additional OR-type precedence constraints to the 
classical 'AND' type PC, it is not needed to visit all predecessors of a successor node 
before it can be met, and finishing one of them can let to that particular successor to 
get started. This paper implemented this type of PC graph in VRP for the first time in 
the related literature. The problem was mathematically formulated. Since VRPs are 
known as NP-hard, even in simple versions, our more complicated problem was also 
NP-hard. Therefore, a decomposition based heuristic method was employed to solve 
the problem. Indeed, the routing part was enhanced by heuristics to cover AND/OR PC 
graphs. The computational experiments on several problem instances with different 
sizes demonstrated the efficiency of proposed solution method in terms of solution 
quality. 

Because of the novel nature of the problem, it is recommended two future research 
guidelines: on one hand, this work can be proceeded with other types of VRPs such as 
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VRP with Backhauls and open VRP; on the other hand, the application of other 
heuristic/meta-heuristic algorithms may lead the problem to the better solutions. 
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