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Abstract: WEDM is an intricate process whereby improper selection of machine 
parameters often leads to undesirable performances. Therefore, the extraction of 
optimal machining parameters is pivotal for achieving better performances in WEDM. 
Metaheuristic optimizers have gained immense popularity due to their capability of 
providing global optimal solutions. The application of recently reported metaheuristic 
optimizers in non-traditional machining processes is rarely being explored. In light of 
the above, the current paper examines the use of six recently reported metaheuristic 
optimizers, namely the ant lion optimization (ALO), chimp optimization algorithm 
(ChoA), moth flame optimization (MFO), spotted hyena optimization (SHO), Harris 
Hawk optimization algorithm (HHO), Marine predator algorithm (MPA) to optimize 
WEDM performances in three WEDM processes. Particle swarm optimization (PSO) and 
Teaching learning-based optimization (TLBO), two well-known existing optimization 
approaches, are also included in this study to enable a reasonable comparison of the 
algorithms' performance. The algorithms are compared with parameters such as the 
quality of optimal solutions, convergence behavior, and average computational time. 
HHO algorithm is found to be robust amongst the eight competitors in terms of 
culminating the global optimal solution and propensity to quickly converge to the global 
optimal solution which corroborates the high exploration and exploitation capability of 
the algorithm. Therefore, HHO optimizer can be exploited in future to determine the 
optimal operating conditions for other manufacturing processes. 

Keywords: WEDM, optimization, metaheuristic algorithms, two sample t-test, 
sensitivity analysis.
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1. Introduction  

In the era of technological advancements, there is a growing demand for advanced 
materials which are hard and difficult-to-machine. The machining of such advanced 
materials with high geometrical accuracy using traditional machining approaches is 
an impossible task. As a result, a number of non-traditional machining (NTM) 
techniques are available to meet the requirement for high geometrical accuracy. 
WEDM is a non-traditional machining approach that has garnered a lot of interest in 
the industry because of its ability to create intricate curves with high geometrical 
accuracy (Majumder & Maity, 2018). The material removal in the WEDM process 
commences when an electric spark emerges amid the wire-workpiece interface. The 
spark liquidifies the material, and subsequently the molten debris is cleaned by the 
dielectric fluid injected from the top and bottom nozzles. The simplified view of the 
WEDM procedure is portrayed in Figure 1 (Absil et al., 2021). 

 

Figure 1. Simplified view of WEDM process 

The performance attributes in WEDM are not always acquired at the envisioned 
level due to the process's intrinsic nature and a number of processing parameters 
(pulse duration, pulse interval, servo voltage, wire feed, wire speed, and so on), i.e., 
each process performance enhancement comes at the expense of another. As a result, 
machining under optimal operating conditions guarantees that a trade-off between 
the process performances is adequately maintained. In light of the preceding, 
researchers looked at several optimization techniques for selecting the best 
combination of process attributes. The next section provides a concise description of 
the optimization techniques that have been reported in WEDM operation, the 
importance of metaheursitic optimization algorithms and the advantages and 
limitations of different metaheuristic optimizers. 

2. Literature Review 

Mandal et al. (2016) derived the optimal operating conditions by the desirability 
function while processing Nimonic C-263 superalloy through WEDM (Mandal et al., 
2016). In a recent investigation, the research group adopted a hybrid strategy i.e., 
signal-to-noise ratio and the Taguchi methodology to optimize the performance 
variables of the WEDM process concurrently (Ramakrishnan & Karunamoorthy, 
2008). A group of researchers optimized the performances using RSM in WEDM of 
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Inconel 718 (Tonday & Tigga, 2019). Khan et al. (2014) implemented grey relational 
strategy to optimize microhardness and surface roughness simultaneously during the 
WEDM process (Khan et al., 2014). It is worth pointing that conventional techniques 
such as the Taguchi approach and grey relational analysis do not guarantee global 
optimum solutions as they commence the optimization with the specific level of 
process parameters. As a result, researchers are intrigued to adopt metaheuristic 
algorithms in WEDM process since they provide global optimum solutions or the best 
solutions. Metaheuristic algorithms are algorithms that are used in tackling a 
spectrum of complicated optimization problems without requiring to substantially 
adapt to each problem. The greek word "meta," which appears in the term, denotes 
that these algorithms are "higher level" heuristics, as contrary to problem-specific 
heuristics. 

Metaheuristic algorithms are commonly used to address problems for which no 
appropriate problem-specific algorithm exists. The following traits are shared by 
almost all metaheuristics: They are nature-inspired; they use stochastic components 
(involving random variables); they do not evaluate the gradient or Hessian matrix of 
the objective function (Yoshioka et al., 2019). 

The research community has been using metaheuristic algorithms in WEDM for 
the past thirty years. One pioneer contribution is the proposition of the simulated 
annealing method in WEDM to discover the optimal operating condition for the 
cutting rate and surface roughness (Tarng et al., 1995). In a similar manner, Sadeghi 
et al. (2011) explored the Tabu-search algorithm for optimizing the performance 
parameters (Sadeghi et al., 2011). In WEDM of Inconel-690, a modified version of 
cuckoo search algorithm is proposed to assess the optimal outcomes (Rao et al., 2011). 
A group of two researcher performed optimization of the performance parameters 
employing bat algorithm in taper formation in Inconel 718 exploiting WEDM. In a 
research effort, NSGA methodology is executed to track the various optimal 
parametric combinations (Pareto set) for two performance parameters in WEDM of 
Ti6Al4V (Nayak & Mahapatra, 2016). In a similar manner, Garg et al. (2012) found a 
set of Pareto optimal solutions in WEDM of Ti6Al-4V alloy employing the NSGA-II 
algorithm (Garg et al., 2012). In view of the above, it is observed that there are limited 
research in WEDM which have documented the use of metaheuristic optimizers in 
WEDM processes. It is worth emphasizing that the No-Free-Lunch (NFL) theorem 
asserts that one specific algorithm cannot solve all sorts of optimization problems 
(Wolpert & Macready, 1997).  

Furthermore, previous studies have not documented the use of recently developed 
metaheuristic optimizers in WEDM. As a result, we plan to investigate the algorithmic 
performance of six recently reported metaheuristic optimizers, as well as two popular 
state-of-the-art metaheuristic optimizers, while optimizing WEDM performances 
either individually (single-objective) or collectively (multi-objective) for three WEDM 
processes. The six recently reported metaheuristic optimizers are ant lion 
optimization (ALO), chimp optimization algorithm (ChoA), moth flame optimization 
(MFO), spotted hyena optimization (SHO), Harris Hawk optimization (HHO), and 
Marine predator algorithm (MPA). Whereas, the two popular metaheuristic 
optimizers are particle swarm optimization and teaching learning- based 
optimization. We discussed the typical characteristics of each representative 
algorithm as follows to support the decisions made during the algorithm selection 
process. The PSO optimizer is simpler (Lee & Park, 2006). However, the main loophole 
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of this optimizer is the quick convergence of all solutions which undermines the 
diversity in the population (Juneja & Nagar, 2016). The TLBO optimizer has fewer 
tuning parameters than other optimizers, doesn't get stuck in local optima like other 
optimizers, and provides an accurate global optimal solution in minimum time (Uzlu 
et al., 2014). The limitation of this optimizer is that it ends with near-optimal solution 
in minimum iterative step (Sultana & Roy, 2014). SHO requires a low computational 
effort when tackling problems with high dimensions (Krishna et al., 2021). However, 
it is found that the problem space remains partially explored using SHO because of 
the concentrated search around the current optimal solution which might be a local 
optimum (Sabahno & Safara, 2022). ChoA has ample of advantages such as high 
exploration, a semi-deterministic feature of chaotic maps assists in high exploitation, 
local optima avoidance is very high, few parameters to tune, ease in implementation 
due to the parallel structure of independent groups (Khishe & Mosavi, 2020).  

In contrary, it has few limitations such as premature convergence, a slow rate of 
convergence, discovering local minima rather than global minima, and a low balance 
between exploitation and exploration (Kaur et al., 2022). The advantage of using MFO 
is that it is simple, and can be easily hybridized with other algorithms (Shehab et al., 
2020). But, it may easily fall into the local optima because it emphasizes on 
exploitation more than exploration which causes premature convergence, and the 
search ability is insufficient (Shan et al., 2021). Population diversity, strong 
optimization ability, and fewer adjustment factors are the typical advantages of ALO 
algorithm (Yao et al., 2021). Due to the roulette wheel selection technique, ALO 
algorithm suffers from rapid convergence (Abualigah et al., 2021). MPA optimizer has 
limited number of algorithmic variables. Moreover, the procedures are simple and 
converge fast with the added benefits of flexibility, and robustness (Yakout et al., 
2021). However, it exhibits premature convergence in complex and high dimensional 
problems, and falls in local optima (Houssein et al., 2021). HHO optimizer is simple 
and has a few exploratory and exploitative mechanisms (Mansoor et al., 2020). But it 
has the major limitation of displaying finite exploration behavior as the exploration 
behavior depends on the equal perching chance, and in the mid-flight, the escape 
energy gets limited within unity (Naik et al., 2021). 

In the present study, the goal is to compare the considered algorithms' 
performances based on several parameters such as the quality of optimal solutions, 
convergence behavior, and average computing time. The motive behind the 
comparative analysis is to find the most reliable optimization algorithm. Performance 
stability of the optimizers are retrieved exploiting the sensitivity analyses. Lastly, we 
tested the performance of the eight competing optimizers on benchmark test 
functions (i.e., the Sphere function and the Generalized Rastrigin's function) to 
determine the robust algorithm. The strategy adopted to accomplish the goal of the 
current research is delineated with a flowchart (see in Figure 2). 
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Figure 2. Flowchart showing the strategy adopted for the present work 

3. Metaheuristic optimization algorithms 

3.1. Teaching Learning Based Optimization (TLBO) 

The fundamental concept of TLBO is to simulate a two-stage learning process in a 
traditional classroom setting (Rao et al., 2011). The communication of knowledge 
between a teacher and students occurs in the first stage, known as the Teacher Phase. 
The amount of knowledge gained by students is proportional to the amount of 
teacher's knowledge. However, in practice, the likelihood of the teaching to become 
successful is distributed according to Gaussian law.  

Only a small percentage of students can comprehend everything indicated by the 
right end of the Gaussian distribution. However, the chances of learning new things 
aren't entirely eliminated. A student can understand from the fellow students at the 
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second stage, known as the Learner Phase. Overall, the amount of knowledge 
conveyed to a student is determined by his or her teacher and by peer learning 
exchanges. 

3.1.1. Teacher Phase 

In this phase, a teacher intends to improve the average performance in the subject 
being taught. The teaching job is first assigned to the best individual in the population 
𝑋𝑡𝑒𝑎𝑐ℎ𝑒𝑟, after which the algorithm improves other individuals 𝑋𝑖 by adjusting their 
positions towards that of the teacher 𝑋𝑡𝑒𝑎𝑐ℎ𝑒𝑟. The current mean value of the 
individuals 𝑋𝑚𝑒𝑎𝑛 is used to create each individual's position, which symbolizes the 
traits of all learners in the current generation. The disparity amid the teacher's 
knowledge and the students’ knowledge is simulated in Eq. (1), which shows how the 
difference in student performance is affected by the difference in teacher’s knowledge 
and the students’ knowledge. 

𝑋𝑛𝑒𝑤 = 𝑋𝑖 + 𝑟(𝑋𝑡𝑒𝑎𝑐ℎ𝑒𝑟 − (𝑇𝐹𝑋𝑚𝑒𝑎𝑛))     (1) 

The TF in Eq. (1) refers to a teaching factor which depicts the altered mean value, 
and r refers a random number in [0,1] 

3.1.2. Learner Phase 

Increasing an individual's knowledge (𝑋𝑖) is done in this phase through peer 
learning from any student 𝑋𝑖𝑖 and interaction amid the individual and other learners. 
Two states can arise based on the relative knowledge levels of these two students: if 
𝑋𝑖𝑖  is better than 𝑋𝑖 , 𝑋𝑖  will move towards 𝑋𝑖𝑖  (shown in Eq. (2)), and if 𝑋𝑖𝑖  is worse 
than 𝑋𝑖 , 𝑋𝑖  will be moved away from 𝑋𝑖𝑖 (shown in Eq. (3). Student will be allowed 
into the population if he or she performs better by using Eq. (2), and Eq. (3). The 
algorithm will iterate till the end condition is reached. 

𝑋𝑛𝑒𝑤 = 𝑋𝑖 + 𝑟(𝑋𝑖𝑖 − (𝑋𝑖)              (2) 

𝑋𝑛𝑒𝑤 = 𝑋𝑖 + 𝑟(𝑋𝑖 − (𝑋𝑖𝑖)              (3) 

3.2. Particle Swarm Optimization 

PSO is led by swarm intelligence behavior which takes advantage of the social 
information sharing model. Individuals (i.e., particles) fly across a higher- 
dimensional search space in PSO (Poli et al., 2007). The individuals' tendency to 
imitate the success of others in population leads to changes in particle positions 
within the search space (called swarm). The knowledge, of a particle's surroundings 
thereby affects its modification within the swarm. The search characteristic of a 
particle is affected by the search characteristic of other particles in the swarm.  

The particle keeps track of its location in the problem space, which is related to its 
best solution so far, known as 𝑝𝑏𝑒𝑠𝑡 , and the overall best value is the best value 

recorded by the particle swarm optimizer when globally treated. Furthermore, its 
current location, as determined by any particle in the population, is known as 𝑔𝑏𝑒𝑠𝑡 . 

Each particle's velocity is changed as it moves toward its 𝑝𝑏𝑒𝑠𝑡 and 𝑔𝑏𝑒𝑠𝑡 positions in 

the particle swarm optimization process. Separate random values are created for 
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acceleration towards the 𝑝𝑏𝑒𝑠𝑡 and 𝑔𝑏𝑒𝑠𝑡 positions, which are weighted by random 

terms. The PSO method adjusts the particle's velocities and positions as shown in the 
equations below: 

𝑣𝑒𝑙𝑖(𝑡 + 1) = 𝜆[𝑣𝑒𝑙𝑖(𝑡) + 𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡 − 𝑧𝑖(𝑡)) + 𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡 − 𝑧𝑖(𝑡))], 𝜆 =
2

|√2−𝜑−√𝜑2−4𝜑

     (4) 

Where  𝜑 = 𝑐1 + 𝑐2, 𝜑 > 4 

𝑧𝑖(𝑡 + 1) = 𝑧𝑖 + 𝑣𝑒𝑙𝑖(𝑡 + 1)(5) 

where, c1 and c2 are the positive constants which represent the cognitive learning 
factor, and social learning factor respectively, r1 and r2 are random numbers in range 
[0,1].  𝑧𝑖 = [𝑧𝑖1, 𝑧𝑖2, … . , 𝑧𝑖𝑑𝑖𝑚]𝑇 depicts the ith particle position in the search space of 
dimension dim, and 𝑣𝑒𝑙𝑖 = [𝑣𝑒𝑙𝑖1, 𝑣𝑒𝑙𝑖2, … . , 𝑣𝑒𝑙𝑖𝑛]𝑇 depicts the ith particle velocity. 

3.3. Spotted Hyena optimizer 

Spotted Hyena Optimizer is a new bio-inspired optimization algorithm, which 
simulates the collaborative behavior of a group of spotted hyenas during encircling, 
hunting, and attacking the prey (Dhiman & Kumar, 2017). 

3.3.1 Prey encircling 

During prey encircling, the target prey is assumed to be the best solution, and the 
other spotted hyenas change their positions by following the best solution. This 
behavior is mathematically modeled as follows: 

                                                         𝐷⃗⃗ h = |𝐴 . 𝑃⃗ prey (𝑡) - 𝑃⃗ SH(𝑡)|                                                                               (6)        

                                                        𝑃⃗ SH (𝑡 + 1)= 𝑃⃗ Prey (𝑡) - 𝐵⃗ . 𝐷⃗⃗ h                                                                        (7)                                                                                                                                                                                      

where  𝐷⃗⃗ h denotes the separation between the spotted hyena and prey, t denotes the 

present iteration, 𝐴  and 𝐵⃗  are co-efficient vectors, 𝑃⃗ Prey represent prey’s position 

vector, and  𝑃⃗ SH represent spotted hyena’s position vector. 

                                                                    𝐴 = 2 × 𝑟 1                                                                         (8) 

                                                                𝐵⃗ = 2𝑠 × 𝑟 2 - 𝑠                                                                    (9) 

                                                        𝑠 = 5 − (𝑡 ×
5

𝑀𝑎𝑥𝐼𝑡𝑒𝑟
)                                                              (10)    

where 𝑠   reduces linearly from 5 to 0, and 𝑟 1, 𝑟 2 and randomly changes between 0 and 
1. 

3.3.2 Prey hunting and Prey searching 

During prey hunting, the hunting strategy adopted by spotted hyenas in the SHO 
algorithm is modeled mathematically as follows: 

                                         𝐷⃗⃗ K = |𝐴 . 𝑃⃗ bSH -𝑃⃗ K                                                                         (11) 

                                            𝑃⃗ K = 𝑃⃗ bSH-𝐵⃗ × 𝐷⃗⃗ K                                                           (12) 

                         𝐶 h =𝑃⃗ K + 𝑃⃗ K+1 +….+ 𝑃⃗ K+M                                                  (13) 

where, 𝑃⃗ bSH is the initial best position of spotted hyena, 𝑃⃗ K represents the position of 
other spotted hyenas, and M represents the number of spotted hyenas (shown in 
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Eq.(13)). 

                                      M=count(𝑃⃗ bSH, 𝑃⃗ bSH+1, 𝑃⃗ bSH+2,…(𝑃⃗ bSH +𝑅⃗ ))              (14) 

𝑅⃗  randomly varies between 0.5 and 1, and 𝐶 h is a cluster of M number of optimal 
solutions. During prey hunting, spotted Hyenas attack the prey in a way that is 
mathematically expressed below: 

                                                               𝑃⃗ SH (𝑡 + 1)=
𝐶ℎ⃗⃗⃗⃗  ⃗

𝑀
                                                               (15) 

where, 𝑃⃗ SH (𝑡 + 1) saves the best solutions, and the positions of the remaining spotted 
hyenas' changes relative to the best-spotted hyena’s position. During prey searching, 
the vector A in Eq. (11) provides random values during the iteration process, which 
aids in exploration. 

3.4. Chimp Optimization algorithm 

The Chimp optimization algorithm, a metaheuristic optimizer, is motivated by the 
intelligence behavior exhibited by the chimps during hunting in their communities 
(Khishe & Mosavi, 2020). There are four categories of chimps, i.e., attacker, chaser, 
barrier, and driver, with different capabilities. The chaser, barrier, and driver lead the 
exploration process while the function of the attacker leads the exploitation process. 
The behavior of chimps modeled as follows: 

                                               d=𝑐. 𝑃𝑃𝑟𝑒𝑦 (𝑡) − 𝑜. 𝑃𝑐ℎ𝑖𝑚𝑝 (𝑡)                                                              (16) 

                                           𝑃𝑐ℎ𝑖𝑚𝑝 (𝑡 + 1) = 𝑃𝑃𝑟𝑒𝑦 (𝑡) − 𝑎. 𝑑                                                         (17) 

where 𝑃𝑃𝑟𝑒𝑦 and 𝑃𝑐ℎ𝑖𝑚𝑝 indicate the position vectors of the prey and the chimp 

respectively. The co-efficient vectors c, o, and a are determined as follows: 

                                                         𝑎 = 2. 𝑔. 𝑟1 − 𝑔                                                               (18) 

                                                           𝑐 = 2. 𝑟2                                                                         (19) 

                                                  𝑜 = chaotic_value                                                               (20) 

where g diminishes from 2.5 to 0 through the iteration process, o is a chaotic vector 
determined using chaotic maps. The generation of stochastic population of chimps is 
the initial step in the chimp optimization algorithm. Then in the next step, chimps are 
classified into four varying categories: driver, barrier, attacker, and chaser. The best 
chimps are the initial attacker, barrier, driver, and chaser as they are aware of the 
prey's position.  

Therefore, amongst the entire set of best solutions, four best solutions are used to 
represent them. The rest of the chimps are compelled to change their locations on the 
basis of the best chimp locations. This behavior can be mathematically expressed as 
below: 

                                                  𝑑Attacker = |𝑐1. 𝑃Attacker (𝑡) − 𝑜1. 𝑃|                                             (21) 

                                                  𝑑Barrier = |𝑐2. 𝑃Barrier (𝑡) − 𝑜2. 𝑃|                                          (22) 

                                                   𝑑Chaser = |𝑐3. 𝑃Chaser (𝑡) − 𝑜3. 𝑃|                                                  (23) 

                                                   𝑑Driver = |𝑐4. 𝑃Driver (𝑡) − 𝑜4. 𝑃|                                                (24) 

                                                    𝑃1 = 𝑃Attacker (𝑡) − 𝑎1. 𝑑Attacker                                        (25) 
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                                                    𝑃2 = 𝑃Barrier (𝑡) − 𝑎2. 𝑑Barrier                                                     (26) 

                                                    𝑃3 = 𝑃Chaser (𝑡) − 𝑎3. 𝑑Chaser                                                  (27) 

                                                   𝑃4 = 𝑃Driver (𝑡) − 𝑎4. 𝑑Driver                                                     (28) 

                                                   𝑃 (𝑡 + 1) = (𝑃1 + 𝑃2 + 𝑃3 + 𝑃4)/4                                       (29) 
where, 𝑑𝐴𝑡𝑡𝑎𝑐𝑘𝑒𝑟 ,  𝑑𝐵𝑎𝑟𝑟𝑖𝑒𝑟,  𝑑𝐶ℎ𝑎𝑠𝑒𝑟,  𝑑𝐷𝑟𝑖𝑣𝑒𝑟 analogs with d in Eq. (16).  

For updating the location of the chimps during the searching period, a probability 
of 50% is chosen between two alternatives, i.e., the usual updating rule and the chaotic 
model, which is mathematically expressed below: 

                                          𝑃chimp(𝑡 + 1) = {
𝑃Prey(𝑡) − 𝑎. 𝑑 𝑖𝑓𝜇 < 0.5

Chaotic_value 𝑖𝑓𝜇 ≥ 0.5
                             (30) 

3.5. Moth Flame Optimization 

Transverse orientation for navigation of moths at night using moonlight forms the 
motivation of this MFO algorithm (Mirjalili, 2015b). In the MFO algorithm, the 
candidate solutions are the moths and the problem variables refers to their positions 
in the search space. The set of moths is represented as a matrix with n moths and dim 
dimensions which is shown below: 

                                                     𝑀 = [

𝑚1,1   

𝑚2,1   
 

⋮
𝑚𝑛,1   

𝑚1,2   

𝑚2,2   

⋮
𝑚𝑛,1   

⋯
⋯
⋮
⋯

   𝑚1,𝑑𝑖𝑚   

 𝑚2,𝑑𝑖𝑚   
 

⋮
 𝑚𝑛,𝑑𝑖𝑚   

]                                               (31) 

We further suppose that the fitness values for all the moths are stored in an array, 
as follows: 

                                                                    𝑂𝑀 = [

𝑂𝑀1

𝑂𝑀2

⋮
𝑂𝑀𝑛   

]                                                        (32) 

Another key part of the MFO algorithm is flames. The following is a matrix that is 
identical to the moth matrix: 

                                                     𝑀 = [

𝐹1,1   

𝐹2,1   
 

⋮
𝐹𝑛,1   

𝐹1,2   

𝐹2,2   

⋮
𝐹𝑛,1   

𝐹1,𝑑𝑖𝑚   

𝐹2,𝑑𝑖𝑚   

⋮
𝐹𝑛,𝑑𝑖𝑚   

]                                                    (33) 

where n is the number of moths and dim is the dimension. The dimension of the 
flame matrix is the same as the dimension of the moth matrix. Both the moth and the 
flame are solutions, but the moth is the search agent and the flame is the moth's best 
position. Flames are the flags that moths drop during the search process, and the 
moths travel around the flags and update accordingly. As a result of this, the moths 
never lose their best solution. According to the equation below, moths update their 
position in relation to flame. 

                                                              𝑀𝑖 = 𝑆(𝑀𝑖 , 𝐹𝑗)                                                             (34) 

where 𝑀𝑖 represents the ith moth, 𝐹𝑗 represents the jth flame, and the spiral function is 

represented by S. The logarithmic spiral motion of the moth is given below: 
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                                                       𝑆(𝑀𝑖 , 𝐹𝑗) = 𝐷𝑖 . 𝑒
𝑏𝑡.cos(2𝜋𝑟) + 𝐹𝑗                                   (35) 

                                                         Where, 𝐷𝑖 = |𝐹𝑗 − 𝑀𝑖                                                     (36) 

b is a constant that determines the form of spiral motion, r refers to random number 
within [-1, 1]. Flame gets updated over the course of iterations as follows: 

                                                flame no = round (N − t ∗
N−1

MaxIter
)                                     (37) 

where N is the maximum number of flame 

3.6. Ant Lion Optimization 

Ant Lion Optimizer is a metaheuristic optimizer which is conceptualized based on 
the chasing strategy of antlions in catching their prey (Mirjalili, 2015a). The ant lions 
hide underneath the base of the cone-shaped cavities in the sand and then wait for the 
ants to get captured in the hole. They throw sand at the tip of the trap so that the ants 
fail to escape and slide down to the bottom of the trap. In this manner, the ants get 
captured by the ant lions. The pits are rebuilded to capture other ants. The positions 
of the ants are stored in the matrix M Ant (shown in Eq. (38)) which is employed during 
the optimization. 

                                                 𝑀 = [
𝐴11 ⋯ 𝐴1𝑑𝑖𝑚

⋮ ⋱ ⋮
𝐴𝑛1 ⋯ 𝐴𝑛𝑑𝑖𝑚

]                                                          (38) 

where n refers to the quantity of ants, and dim refers to the dimension of the problem. 
Fitness function f is utilized for the evaluation of the fitness of each ant during 
optimization; the fitness values are stored in the matrix M OAnt as shown below: 

                                             𝑀𝑂𝐴𝑛𝑡 =

[
 
 
 
 
f([𝐴1,1𝐴1,2 , … , 𝐴1,𝑑𝑖𝑚])

f([𝐴2,1𝐴2,2 , … , 𝐴2,𝑑𝑖𝑚])

⋮
⋮

f([𝐴𝑛,1𝐴𝑛,2 , … , 𝐴𝑛,𝑑𝑖𝑚])]
 
 
 
 

                                                    (39) 

Apart from ants, the ant lions also have their hideouts in the search domain. The 
matrices MAntlion and MOAntlion save the positions and fitness values of the ant lions, 
respectively. 

                                             𝑀𝐴𝑛𝑡𝑙𝑖𝑜𝑛 = [

𝐴1,1 ⋯ 𝐴1,𝑚

⋮ ⋱ ⋮
𝐴𝑛,1 ⋯ 𝐴𝑛,𝑚 

]                                                    (40) 

                                           𝑀𝑂𝐴𝑛𝑡𝑙𝑖𝑜𝑛 =

[
 
 
 
 
𝑓([𝐴𝐿1,1𝐴𝐿1,2 , … , 𝐴𝐿1,𝑚])

𝑓([𝐴𝐿2,1𝐴𝐿2,2 , … , 𝐴𝐿2,𝑚])

⋮
⋮

𝑓([𝐴𝐿𝑛,1𝐴𝐿𝑛,2 , … , 𝐴𝐿𝑛,𝑚])]
 
 
 
 

                                     (41) 

While searching for food, ants move in a stochastic fashion; thus, a random walk is 
selected to simulate ants’ movement as below: 

     𝑋(𝑡) = [0, 𝑐𝑠𝑢𝑚(2𝑟(𝑡1) − 1), 𝑐𝑠𝑢𝑚(2𝑟(𝑡2) − 1)… , 𝑐𝑠𝑢𝑚(2𝑟(𝑡𝑀𝑎𝑥𝐼𝑡𝑒𝑟) − 1)]       (42) 

where csum reveals the cumulative sum, t reveals the random walk steps, and r (t) is 
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a stochastic function which is enumerated as follows: 

                                                         𝑟(𝑡) = {
1 if rand > 0.5
0 if rand ≤ 0.5

                                                      (43) 

To limit the movement within the search space in a random fashion, Eq. (42) is 
normalized exploiting the Eq. (44) 

                                                           𝑋𝑖
𝑡 =

(𝑋𝑖
𝑡−𝑎𝑖)×(𝑏𝑖−𝑐𝑖

𝑡)

(𝑑𝑖
𝑡−𝑎𝑖)

+ 𝑐𝑖                                                      (44) 

Eq. (45), and Eq. (46) show how ants’ slide down into pits. 

                                                                 𝑐𝑡 =
𝑐𝑡

𝐼
                                                                        (45) 

                                                                 𝑑𝑡 =
𝑑𝑡

𝐼
                                                                        (46) 

When the ant reaches the pit bottom, the antlion snatches it and consumes it. To 
improve its chances of obtaining new prey, an antlion must update its position to the 
most recent position of the chased ant. Eq. (47) represents this procedure 

                                                 Antlionj
t=Anti

i if f(Anti
t) > f(Antlionj

t)                              (47) 

In every step, elitism is employed to keep the best solutions. The fittest antlion is 
treated as elite, which is the best antlion achieved. In every step, the elite should have 
an impact on the antlion (random movement). For this, every ant is assumed to 
associate with an antlion by Roulette wheel and elite, which Eq. (48) gives. 

                                                       Anti
𝑡=

𝑅𝐴
𝑡 +𝑅𝐸

𝑡

2
                                                                         (48) 

𝑅𝐴
𝑡 , and 𝑅𝐸

𝑡 represent the random walk around the selected antlion and elite at tth 
iteration respectively. 

3.7. Marine Predator Algorithm (MPA) 

The marine predator algorithm is a novel nature-inspired metaheuristic algorithm 
that replicates the biological interaction between marine predators and prey 
(Faramarzi et al., 2020). Predators are inspired in this algorithm to use the 
widespread foraging methods known as the Brownian and Levy random movement 
in the marine ecosystem.  

Predators utilize the Brownian approach if there exists a large concentration of 
prey in the hunting region, and the Levy method when there is a low concentration of 
prey. However, environmental factors namely eddy generation and the effects of fish 
aggregating devices (FADs) are among the elements that influence marine predator 
behavior. The steps of the algorithm are enumerated as follows: 

3.7.1. Initialization 

Both the Prey (P) and Elite (E) matrices are formed during the initialization phase. 
In accordance with the survival of the fittest argument, the skilled foragers are the top 
predators in nature. Thus, in order to construct the Elite matrix, the fittest solution is 
designated as a top predator. Prey is another matrix with the same dimension as Elite, 
and predators use it to update their positions. 
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3.7.2. Phase 1 

This phase commences during the one-third of iterations and is implemented by a 
large velocity ratio (v 10) for an adequate exploration ability, wherein the movement 
of the prey is faster than the predator. The prey moves quickly to guard their food. 
Whereas the fittest predators are stationary during this stage. This stage is 
mathematically illustrated with the help of equations (Eq. 49 & Eq. 50). 

                                         While t <
MaxIter

3
 

                                                              𝑆 𝑖 = 𝑅𝐵
⃗⃗⃗⃗  ⃗⨂(𝐸⃗ 𝑖 − (𝑅𝐵

⃗⃗⃗⃗  ⃗⨂𝑃⃗ 𝑖))𝑖 = 1,2,…, n                                            (49) 

                                                              𝑃⃗ 𝑖 = 𝑃⃗ 𝑖 + (0.5𝑅⃗ ⨂𝑆 𝑖))                                                                   (50) 

where 𝑆 𝑖 indicate the step size of the predator, 𝑅𝐵
⃗⃗⃗⃗  ⃗ is the random vector based on 

normally distributed Brownian motion, 𝑅⃗  indicate a uniformly distributed random 
variable, and n indicates the search agents per population. The notation ⨂ indicate 
entry-wise multiplications.  

3.7.3. Phase 2  

In this phase, there is a transient transformation from exploration to exploitation. 
Here, the velocity ratio of unity (v ≈ 1) indicates that both the predator and the prey 
moves at an identical speed. 

                                                  While 
MaxIter

3
< t <

2

3
MaxIter 

The first half population gets updated based on Levy strategy as follows 

                                                                𝑆 𝑖 = 𝑅𝐿
⃗⃗⃗⃗ ⨂(𝐸⃗ 𝑖 − (𝑅𝐿

⃗⃗⃗⃗ ⨂𝑃⃗ 𝑖))𝑖 = 1,2, …, n/2                                            (51) 

                                                                𝑃⃗ 𝑖 = 𝑃⃗ 𝑖 + (0.5𝑅⃗ ⨂𝑆 𝑖))                                                                   (52) 

where 𝑅𝐿
⃗⃗⃗⃗  is a uniformly distributed random vector based on Levy motion. On 

contrary, the second half population is updated using Brownian strategy as follows 
(shown in Eq. (53) & Eq. (54): 

                                                                𝑆 𝑖 = 𝑅𝐵
⃗⃗⃗⃗  ⃗⨂ ((𝑅⃗ 𝐵⨂𝐸⃗ 𝑖) − 𝑃⃗ 𝑖) 𝑖 = 𝑛/2,…, n                                            (53) 

                                                                𝑃⃗ 𝑖 = 𝐸⃗ 𝑖 + (0.5𝑋𝑓⨂𝑆 𝑖))                                                                   (54) 

where Xf is a variable that monitor the predator’s step size and is evaluated by the 
following Eq. (55) 

                                                                      𝑋𝑓 = [1 − (
𝑡

𝑀𝑎𝑥𝐼𝑡𝑟
)]

(2×𝑡/𝑀𝑎𝑥𝐼𝑡𝑒𝑟)

                                                      (55) 

3.7.4 Phase 3 

This phase is usually marked with a high level of exploitation capacity. This phase 
is marked by a low velocity ratio (v = 0.1), in which the predator runs past the prey. 
This phase is based on Levy movement which is mathematically expressed as follows 

                                          While t >
2

3
MaxIter 

                                                                𝑆 𝑖 = 𝑅𝐿
⃗⃗⃗⃗ ⨂ ((𝑅⃗ 𝐵⨂𝐸⃗ 𝑖) − 𝑃⃗ 𝑖) 𝑖 = 1,2,…, n                                             (56) 
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                                                                𝑃⃗ 𝑖 = 𝐸⃗ 𝑖 + (0.5𝑋𝑓⨂𝑆 𝑖))                                                                    (57) 

3.7.5. Finishing 

After each iteration, the best solutions gets stored in the Elite (E) matrix. The final 
solution is then achieved after the last iteration. 

3.8. Harris Hawk Optimization 

Harris Hawk optimization (HHO) is a new nature-inspired optimizer that imitates 
the chasing trait of Harris hawks in order to catch their prey (rabbit), which are the 
best solutions in the search space (Heidari et al., 2019). HHO goes through two stages: 
the first is looking for prey with a group of hawks, and this stage is referred to as the 
exploration phase in the algorithm. The second stage involves hunting the prey in 
order to catch it, which is depicted in the optimization algorithm as the exploitation 
phase. The balance between exploitation and exploration of search space is 
determined by the rabbit's energy escape, with hawks having the potential to explore 
for large energy and exploitation for small energy (Kuriakose & Shunmugam, 2005). 
In the exploration phase, the HHO algorithm employs two alternative search 
strategies. These strategies are chosen based on α; if α is greater than 0.5, the first 
strategy is employed to search near one of the other hawks at random, but if α is lesser 
than 0.5, the second strategy, stated in Eq. (59) is employed for the search operation. 

                          𝑋(𝑡 + 1) = {𝑋𝑟𝑎𝑛𝑑(𝑡) − 𝑠1|𝑋𝑟𝑎𝑛𝑑(𝑡) − 2𝑠2𝑋(𝑡)|}𝛼 ≥ 0.5                    (58) 

                    𝑋(𝑡 + 1) = {(𝑋𝑟𝑎𝑏𝑏𝑖𝑡(𝑡) − 𝑋𝑚(𝑡)) − 𝑠3(𝐿𝐵 + 𝑠4(𝑈𝐵 − 𝐿𝐵))𝛼 < 0.5}     (59) 

                                                       Where 𝑋𝑚(𝑡) =
1

𝑁
∑ 𝑋𝑖(𝑡)

𝑁
𝑖=1  

The mathematical model to demonstrate the mechanism which is exploited to get 
transformed from the exploration phase to the exploitation phase is shown in Eq. (60). 

                                                         𝐸 = 2𝐸0 (1 −
𝑡

𝑇
)                                                          (60) 

The algorithm arrives the exploration phase when |E| 1 whereas the algorithm 
arrives the exploitation phase when |E| 1. E diminishes when the iteration count 
increases. In the exploitation phase, the HHO algorithm utilizes four different ways to 
conduct optimization operations.  

If E is greater than 0.5, two techniques are used: besiege and soft besiege with 
increasing quick dives. If E is less than 0.5, two techniques are used: besiege and hard 
besiege with progressive quick dives. The illustration of the strategies can be found in 
the literature. 

4. WEDM performance optimization 

To assess the efficacy of the eight metaheuristic optimization techniques, single 
and multiple objective optimization is carried out for two WEDM processes 
(elaborated in case 1, and case 2). The codes for the eight optimizers are built in 
MATLAB R2018a and executed on Windows 10 OS, Intel(R) Core™ i5 processor, and 
8.00 GB RAM. For unprejudiced comparison amid the performances of the considered 
optimizers, population size, and maximum generation is kept at 50 and 100 
respectively for all the considered algorithms 
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4.1. Case 1 Performance optimization in WEDM of A286 superalloy 

We assessed the WEDM performances such as material removal rate (MRR, in 
mm2/min) and surface roughness (SR in µm) for an A286 Superalloy. Machining of 
the samples are accomplished using an Ultra cut F1 model, a variant of the WEDM 
machine tool. Twenty-seven sets of experiments are undergone under the L27 
scheme. Five parameters are tuned in three subsequent levels (depicted in Table 1) 
within the stipulated bounds while machining. Finally, multiple performances are 
optimized simultaneously using a multi-objective evolutionary algorithm and a 
decision making tool (Saha et al., 2021). In this research, we use the eight different 
metaheuristic optimizers to optimize individual performances as well as two 
performances at the same time. The goal is to compare the performances of the 
optimizers. To accomplish the task, we intend to exploit the mathematical expressions 
used for devising the correlation between the response variables and the explanatory 
variables in the previous investigation (Saha et al., 2021). The mathematical models 
are shown below: 

𝑀𝑅𝑅 = 567 − 20.39 𝑥1 − 2.91𝑥2 + 102.8𝑥3 + 28.4𝑥4 + 2.83𝑥5 + 0.0497𝑥1
2 +

0.0354𝑥2
2 − 8.192𝑥3

2 − 0.037𝑥4
2 − 0.0302𝑥5

2 + 0.0117𝑥1 ∗ 𝑥2 + 0.858𝑥1 ∗ 𝑥3 −

0.1511𝑥1 ∗ 𝑥4 − 0.0034𝑥1 ∗ 𝑥5 − 0.244𝑥2 ∗ 𝑥3 − 0.1140𝑥2 ∗ 𝑥4 + 0.0196𝑥2 ∗ 𝑥5 −

0.326𝑥3 ∗ 𝑥4 − 0.145𝑥4 ∗ 𝑥5                                                                                               (61) 

𝑆𝑅 = −177.3 + 0.59 𝑥1 − 0.889𝑥2 + 27.26𝑥3 + 1.82𝑥4 + 0.110𝑥5 − 0.00276𝑥1
2 +

0.00934𝑥2
2 − 1.2656𝑥3

2 − 0.0323𝑥4
2 − 0.00642𝑥5

2 + 0.00014𝑥1 ∗ 𝑥2 + 0.0177𝑥1 ∗

𝑥3 − 0.0157𝑥1 ∗ 𝑥4 − 0.0034𝑥1 ∗ 𝑥5 − 0.244𝑥2 ∗ 𝑥3 − 0.1140𝑥2 ∗ 𝑥4 + 0.0196𝑥2 ∗

𝑥5 − 0.326𝑥3 ∗ 𝑥4 − 0.145𝑥3 ∗ 𝑥5                                                                                               (62) 

Table 1. Process variables and levels 

Process variables Level 1 Level 2 Level 3 

 x1  Pulse on period 

(μs) 

120 125 130 

 x2 Pulse off period 

(μs) 

48 52 56 

 x3 Peak current (A) 10 11 12 

 x4 Wire feed rate 5 7 9 

(m/min) 

 x5  Servo voltage (v) 

 
30 

 
35 

 
40 

4.1.1. Single-objective optimization 

The optimization of MRR and SR is accomplished under a set of constraints 
i.e.,𝟏𝟐𝟎 ≤ 𝒙𝟏 ≤ 𝟏𝟑𝟎, 𝟒𝟖 ≤  𝒙𝟐 ≤ 𝟓𝟔, 𝟏𝟎 ≤ 𝒙𝟑 ≤ 𝟏𝟐, 𝟓 ≤ 𝒙𝟑 ≤ 𝟗, 𝐚𝐧𝐝 𝟑𝟎 ≤ 𝒙𝟒 ≤ 𝟒𝟎. 
The results of the different optimizers for the two performance attributes is 
demonstrated in Table 2. It is evident that ChoA, MFO, HHO, MPA, and PSO are able to 
produce the optimized MRR of 37.527 mm2/min which is close to the maximum MRR 
present in the experimental dataset (Saha et al., 2021). However, ALO, SHO, and TLBO 



Comparative Analysis of Metaheuristic Optimizers in the Performance Optimization of Wire 
Electric Discharge Machining Processes  

129 

produces optimized MRR of 35.701 mm2/min, 29.614 mm2/min and 6.718 mm2/min 
respectively, which is relatively poor. 

 

Figure 3. Convergence behavior of ALO, ChoA, HHO, MFO, MPA, PSO, SHO, and TLBO for 
MRR 

For SR, unlike the SHO, we detect that all the algorithms have produced similar 
results, but better than all the results reported in the previous investigation (Saha et 
al., 2021). To realize the convergence traits of the optimizers, we plotted the 
convergence history of the competing optimizers while optimizing the response MRR 
(shown in Figure 3). It is noted that HHO algorithm rapidly converges to the global 
optimal solution which exposes the algorithm’s outstanding exploitation capability. 

Table 2. Single-objective optimization outcomes 
Optimizer Response Optimal 

Value 
Pulse on 
period 

Pulse off 
period 

Peak 
Current 

Wire 
feed 
rate 

Servo 
voltage 

ALO
 MRR 

SR 
35.701 
0.4776 

130 
120 

48 
56 

11.51 
10 

5.01 
5 

31.14 
40 

ChoA MRR 
SR 

37.527 
0.4776 

130 
120 

48 
56 

11.63 
10 

7 
5 

30 
40 

MFO
 MRR 

SR 
37.527 
0.4776 

130 
120 

48 
56 

11.59 
10 

7 
5 

30 
40 

SHO
 MRR 

SR 
29.614 
0.5320 

130 
120 

48 
56 

12 
10 

5 
9 

30 
40 

MPA
 MRR 

SR 
37.527 
0.4776 

130 
120 

48 
56 

11.59 
10 

7 
5 

30 
40 

HHO
 MRR 

SR 
37.527 
0.4776 

130 
120 

48 
56 

11.59 
10 

7 
5 

30 
40 

PSO
 MRR 

SR 
37.527 
0.4776 

130 
120 

48 
56 

11.59 
10 

5 
5 

30 
40 

TLBO MRR 
SR 

6.718 
0.4776 

120 
120 

56 
56 

10 
10 

9 
5 

40 
40 
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4.1.2 Multiple objective optimization 

To perform optimization of the two performance attributes (MRR and SR) 
simultaneously, we formed the objective function using weighted-sum method as 
follows: 

                                             Min(Y) = 𝑤1
𝑌(SR)

SRmin
− 𝑤2

𝑌(MRR)

MRRmax
                                               (63) 

where 𝑤1 and 𝑤2 are the preference weights assigned to SR and MRR, respectively. 
Here, equal weights for all the responses are considered, i.e., 𝑤1 = 𝑤2 = 0.5 . 𝑆𝑅𝑚𝑖𝑛 is 
the minimum surface roughness and MRRmax is the maximum material removal rate, 
which are procured from the single-objective optimization outcomes. Table 3 shows 
the optimal MRR and SR values recommended using the eight competitor techniques 
(ALO, MFO, ChoA, MPA, SHO, HHO, PSO, and TLBO).  

HHO portrays the superior performance i.e., it produces the global optimal responses 
of MRR and SR at minimal value of the combined fitness function (Y = 0.306708). The 
corresponding optimal process parameters are pulse on period = 130 s, pulse off 
period = 52 s, peak current = 10 A, wire feed rate = 5 m/min, and servo voltage = 30 
volt. Figure 4 analyzed the convergence traits of the eight competing algorithms. The 
objective function of the HHO algorithm approaches the least fitness value (global 
optimum) in the fewest generations possible, demonstrating the algorithm's excellent 
exploitation capability. Table 4 shows the average computing time (seconds) 
consumed by the optimizers while optimizing the multiple performances. As seen in 
Table 4, TLBO has the shortest average computation time. 

Table 3. Multiple objective optimization outcomes 

Optimize
r 

Response Optim
al   

Value 

        Y Pulse 
on 

perio
d 

Puls
e off 

peri
od 

 Current Wir
e 

Spee
d 

Ser
vo 

volt
age 

(Saha et 
al., 2021) 

MRR 

SR 

36.04 

3.49 

 
130 52 10 5 30 

ALO
 MRR 

SR 

1.51 

0.96 

0.47 

967 
120 56 10 

5 39 

MFO 
MRR 

SR 

1.20 

0.79 

0.47 

984 
120 56 10 

5 40 

SHO
 MRR 

SR 

1.20 

0.79 

0.47 

984 
120 56 10 

5 40 

PSO
 MRR 

SR 

1.20 

0.79 

0.47 

984 
120 56 10 

9 40 

TLBO
 MRR 

SR 

1.20 

0.79 

0.47 

984 
120 56 10 

5 40 

HHO
 MRR 

SR 

36.04 

3.49 

0.30 

670 
130 52 10 

5 30 

MPA
 MRR 

SR 

1.20 

0.79 

0.47 

984 
120 56 10 

5 40 

CHoA MRR 

      SR 

1.20 

   0.79 

0.47 

984 
120 56 10 

5 40 
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Figure 4. Convergence behavior of ALO, ChoA, MFO, SHO, HHO, MPA, PSO, and TLBO for 
multi-objective function. 

Table 4. Average computation time for the eight optimizers 

Optimizer Average Computational time (secs) 

ALO 2.20241 

ChoA 1.83478 

MFO 1.53465 

SHO 1.85662 

HHO 2.53421 

MPA 1.25715 

PSO 1.23427 

TLBO 1.20124 

4.2. Case 2 Performance optimization in WEDM of Ti-6Al-4V alloy 

Devarajaiah & Muthumari, (2018) conducted WEDM machining on Ti-6Al-4V 
employing wire EDM machine tool of Model: DK 7732 (Devarajaiah & Muthumari, 
2018). The machine tool used in this work is based on reusable wire technology and 
doesn't need air-conditioning below 40 degrees centigrade. Molybdenum wire 
electrode (diameter of 0.18 mm) is employed as wire electrode. Four parameters, i.e., 
pulse duration, pulse off period, applied current, and wire-speed, were selected as 
control variables. The levels considered for the four control variables are revealed in 
Table 5. Two vital process performance measures were considered as responses (i.e., 
material removal rate (MRR in g/min) and power consumption (PC in kW)).  

The experimental trials were carried out as per Taguchi L16 design, and each trial 
is repeated thrice to capture the variability in the WEDM responses. Furthermore, 
regression analysis was employed by Devarajaiah & Muthumari, (2018) to correlate 
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the performance measures with the control variables (Devarajaiah & Muthumari, 
2018). The regression models for MRR and PC are shown below (Eq. (64) & Eq. (65)): 

        𝑀𝑅𝑅 = 0.00249 𝑥1 − 0.0056𝑥2 + 0.0151𝑥3 − 0.000011𝑥4 − 0.000065𝑥1
2 +

       0.00039𝑥2
2 − 0.00008𝑥3

2 + 0.000001𝑥1𝑥4 − 0.00088𝑥2𝑥3                                                  (64) 

       𝑃𝐶 = 0.0756 + 0.002 𝑥1 − 0.0569𝑥2 + 0.0133𝑥3 + 0.000045𝑥4 + 0.000036𝑥1
2 +

       0.00273𝑥2
2 + 0.002𝑥3

2                                                                                                            (65) 

Table 5. Process variables with levels 

Process Variables Level 1 Level 2 Level 3 Level 4 

 x1     Pulse on 

period (μs)

13 20 27 36 

 x2 Pulse off 4 6 8 10 

period (μs) 

 x3   Current (A) 

 

1 

 

2 

 

4 

 

5 

 x4  Wire speed 

(rpm) 

350 700 1050 1400 

4.2.1 Single objective optimization 

In this case, two responses, i.e., MRR and PC, are optimized separately engaging 
the eight metaheuristic optimization algorithms. In other words, we intend to 
discover the optimal parametric condition for both the responses separately using the 
competing algorithms. The goal is to maximize the MRR and minimize the PC 
subjected to the imposed constraints as follows: 13 ≤ 𝒙𝟏 ≤ 36, 4 ≤ 𝒙𝟐 ≤10 ,1 ≤
𝒙𝟑 ≤5, and 350 ≤ 𝒙𝟒 ≤1400. Table 6 exhibits the single objective optimization 
solutions derived by the eight metaheuristic optimizers. It is observed that all the 
competing optimizers furnished improved optimal MRR than the optimal MRR 
derived by (Devarajaiah & Muthumari, 2018).  

Unlike the SHO algorithm, all the algorithms have drastically improved the MRR 
from its initial value of 0.0647gm/min (Devarajaiah & Muthumari, 2018). From the 
optimal PC values as registered by the eight competitor algorithms (shown in Table 
6), it is worth pointing that all the algorithms deliver almost similar performance. 
Besides, the optimal PC provided by the optimizers are found to be relatively better 
than the optimal PC endorsed by (Devarajaiah & Muthumari, 2018). When the 
convergence traits of the eight competitor algorithms are analyzed (shown in Figure 
5), it is noted that HHO, and TLBO have accelerated tendency to converge faster to 
global optimal solution implying better exploitation potential of the two algorithms. 
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Table 6. Single objective optimization outcomes. 
Optimizer Respon

se 
Optimal   

Value 
Pulse 
durati

on 

Pulse 
off 

period 

 Current Wire 
Spee

d 

(Devarajaiah 
& 

Muthumari, 
2018) 

MRR 
PC 

0.0647 
0.589 

27 
27 

4 
8 

4 
1 

1400 
 

700 

ALO
 MRR 

PC 
0.0825 
0.523 

29.92 
13 

4 
10 

5 
1 

1400 
350 

ChoA 
MRR 

PC 
0.0825 
0.523 

29.92 
13 

4 
10 

5 
1 

1400 
350 

HHO
 MRR 

PC 
0.0825 
0.523 

29.92 
13 

4 
10 

5 
1 

1400 
350 

MPA
 MRR 

PC 
0.0825 

0.52313 
29.92 

13 
4 

10 
5 
1 

1400 
350 

SHO
 MRR 

PC 
0.0669 

0.52313 
21.17 

13 
4 

10 
5 
1 

350 
350 

MFO
 MRR 

PC 
0.0825 

0.52313 
29.92 

13 
4 

10 
5 
1 

1400 
350 

PSO
 MRR 

PC 
0.0825 

0.52313 
29.92 

13 
4 

10 
5 
1 

1400 
350 

TLBO 
MRR 

    PC 
0.0825 

0.52313 
29.92 

13 
4 

10 
5 
1 

1400 
350 

 

Figure 5. Convergence behavior of ALO, ChoA, MFO, SHO, HHO, MPA, PSO, and TLBO for 
MRR. 

4.2.2. Multiple objective optimization 

For multiple performance optimization, Eq. (66) is exploited as the objective 



Maity et al./Oper. Res. Eng. Sci. Theor. Appl. 6(1)2023 115-142 
 

134 

function which is displayed below: 

                                       Min(Y) = 𝑤1
𝑌(PC)

PCmin
− 𝑤2

𝑌(MRR)

MRRmax
                                                  (66) 

where 𝑤1 and 𝑤2 are the preference weights to PC and MRR respectively. In the 
present paper, we have assigned equal weights to PC and MRR, respectively. PCmin is 
the minimum power consumption, and MRRmax is the maximum material removal 
rate.  

The values are attained from the single-objective optimization results. Table 7 
reported the findings of multiple performance optimization exploiting eight 
metaheuristic optimization algorithms. ALO, MFO, ChoA, HHO, TLBO, and MPA have 
been discovered to seek the best trade-off condition for both the performance 
attributes as corroborated when compared with the reported results by (Devarajaiah 
& Muthumari, 2018). Substantial improvement in MRR with a marginal decrement in 
the performance of PC is evident utilizing these algorithms. Conversely, SHO and PSO 
algorithms are found to deliver mediocre optimal performances.  

When the convergence traits of the eight competing algorithms are compared, it is 
discovered that the HHO algorithm rapidly converges to the minimal function value 
at minimal generation (as shown in Figure 6), confirming the HHO algorithm's 
exceptional exploitation capability. The comparison of average computational time 
for the eight algorithms for multiple performance optimization is exhibited in Table 
8. It is noted from Table 8 that the TLBO algorithm requires the least computational 
time to reach the optimality condition. 

Table 7. Multiple-objective optimization outcomes. 

Optimizer Respons
e 

Optimal   
Value 

Y Pulse 
on 

time 

Pulse off 

period 

 Current Wire 
Speed 

(Devarajaiah & 
Muthumari, 

2018) 

MRR 

PC 

0.0348 

0.625 

 20 6 2 1050 

ALO
 MRR 

PC 

0.049 

0.670 
0.53072 16.12 6.71 5 350 

MFO
  MRR 

PC 

0.048 

0.669 
0.53228 16.09 6.77 5 350 

ChoA
 
 MRR 

PC 

0.049 

0.670 
0.53072 16.12 6.71 5 350 

HHO 
 MRR 

PC 

0.049 

0.670 
0.53072 16.12 6.71 5 350 

SHO
 MRR 

PC 

0.044 

0.676 
0.53089 15.75 6.40 5 350 

PSO
 MRR 

PC 

0.0255 

0.572 
0.53199 16.12 10 2.88 350 

TLBO MRR 

PC 

0.049 

0.670 
0.53072 16.12 6.71 5 350 

MPA
  MRR 

    PC 

00.049 

0.670 
0.53072 16.12 6.71 5 350 
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Figure 6. Convergence behavior of ALO, ChoA, MFO, SHO, HHO, MPA, PSO, and TLBO 
for multi-objective function 

Table 8. Average computation time for the eight optimizers 

Optimizer Average computational time (secs) 

ALO 5.070851 

ChoA 1.664359 

MFO 1.119026 

HHO 1.052527 

MPA 0.720689 

SHO 0.1390570 

PSO 0.2506701 

TLBO 0.3054067 

5. Statistical and sensitivity Analysis 

To summarize the robustness and performance stability of the metaheuristic 
optimizers, we retrieved the statistical data evaluated for all the optimizers while 
dealing with multi-objective optimization problems in the two considered cases. The 
statistical metrics such as the mean and co-efficient of variation are evaluated after 
the execution of the optimizers for 30 number of runs. 
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Figure 7. Bar plots revealing mean value of objective function derived using optimizers 
for the two cases. Case-1 Performance optimization in WEDM of A286 superalloy; Case- 

2 Performance optimization in WEDM of Ti-6Al-4V superalloy 

The mean value of objective function procured using the optimizers for the two 
cases are plotted in the form of 3D bar plots in Figure (7). From Figure (7), it is clear 
that HHO provides the least mean value of objective function for all the cases 
corroborating the robustness of HHO over the other competing algorithms in terms 
of tracking the global optimal solution. Figure (8) portrays the coefficient of variation 
procured using the optimizers for the two cases in the form of 3D bar plots. It is noted 
that HHO exhibits the least coefficient of variation for all the cases corroborating that 
HHO optimizer has the maximum stability over its other competitors. To summarize, 
it can also be inferred that HHO exhibits robustness in bolstering an adequate balance 
between two phases (i.e., exploration and exploitation). 

 

Figure 8. Bar plots revealing coefficient of variation derived using optimizers for the 
two cases. Case-1 Performance optimization in WEDM of A286 superalloy; Case-2 

Performance optimization in WEDM of Ti-6Al-4V superalloy 
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6. Performance of optimizers on benchmark test functions 

As corroborated from the different cases investigated in WEDM on the superiority 
of HHO over the other competing algorithms, we further intend to investigate the 
robustness of HHO by comparing its performance with the other competing 
optimizers on standard test functions. The details of the standard test functions can 
be found in the literature (Zhu & Kwong, 2010). The standard test functions 
considered in the present work are the Sphere function, and the Generalized 
Rastrigin’s function, respectively. Sphere function is a unimodal function which 
contains only one optimum point. Whereas Generalized Rastrigin’s function is a 
multimodal function which contains many local optima but only one global optimum. 
The mathematical description of the functions is illustrated below: 

Sphere function 

𝐹(𝑥) = ∑ 𝑥𝑖
2 − 100 ≤ 𝑥𝑖 ≤ 100

𝑑𝑖𝑚=30

𝑖=1

        

where dim denotes the dimension of the solution space, and -100 ≤ 𝒙𝒊 ≤ 100 depicts 
the initial range of 𝒙𝒊. 

Generalized Rastrigin’s function 

𝑭(𝒙) = ∑ [[𝒙𝒊
𝟐 − 𝟏𝟎𝐜𝐨𝐬 (𝟐𝝅𝒙𝒊 + 𝟏𝟎]

𝒅𝒊𝒎=𝟑𝟎

𝒊=𝟏

  − 𝟓. 𝟏𝟐 ≤ 𝒙𝒊 ≤ 𝟓. 𝟏𝟐 

where dim refers the dimension of the solution space, and -5.12 ≤ 𝒙𝒊 ≤ 5.12 depicts 
the initial range of 𝒙𝒊. 

Table 9 depicts the results (Average ± standard deviation) of the eight optimizers 
on the optimization of benchmark test functions. HHO algorithm is found to be 
superior over the other optimizers in terms of robustness. 

Table 9. Performance comparison on benchmark test functions 

Optimize
r 

ALO ChoA MFO HH
O 

MPA SHO PSO TLBO 

 

Sphere 
Function 

5.30E
- 

09 

±3.40
35 

E-09 

 

2.60E- 

06 

±6.43 

E-06 

 

3.38E 

-13 

±5.21 

E-13 

0 ± 
0 

2.76
E -21 
±3.6
6 E-
21 

6.61 
E-

100 
±1.5 
E-99 

3.39
E-07 
±8.4
0871 
E-07 

2.83E -
89 

±6.78 E-
89 

Generaliz
e d 

Rastrigin’
s 

Function 

23.48
09 8± 
12.66
12 3 

10.63 
647 ± 
10.56 
995 

20.70 
2215 ± 
11.50 

4771 2 

0 ± 
0 

0 ± 0 0 ± 
0 

12.4
3697 

± 
6.52
438 

2.45E 
+00 ± 
2.154 

3798 09 

 

(67) 

(68) 
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7. Conclusions 

WEDM is a complicated machining process. Machining in WEDM at any parametric 
combination does not result in enhanced performance outcomes. For improved 
performances in WEDM, machining must be carried out in compliance with the 
optimal parametric settings. Metaheuristic optimizers have grown in prominence due 
to their potential to provide global optimal solutions. However, the use of recently 
reported metaheuristic optimizers in non-traditional machining techniques has 
received little attention. 

The novelty of the present article is to explore the six recently reported 
metaheuristic optimizers namely the ant lion optimization (ALO), chimp optimization 
algorithm (ChoA), moth flame optimization (MFO), spotted hyena optimization (SHO), 
Harris Hawk optimization algorithm (HHO), and Marine predator algorithm (MPA) in 
the optimization of WEDM performances for two WEDM processes.  

Two well-known existing optimization approaches (i.e., PSO and TLBO), are also 
included in this study to allow a fair evaluation of the algorithms' performance. The 
comparison between the eight algorithms are carried out in terms of the optimal 
solutions, convergence rate, and average computational time. The goal of the 
comparative analyses is to select the robust optimizer. It is observed that the HHO 
algorithm is extremely robust in yielding global optimal solutions.  

Moreover, HHO algorithm surpasses other competitors in terms of rapid 
convergence. Thus, HHO portrays high exploration and exploitation potential. TLBO 
algorithm shows the least average computation time. Future research might focus on 
the exploitation of HHO to determine the optimal operating condition in other areas 
of manufacturing. 
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