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Abstract: Multiple response surface methodology (MRSM) is small sample dataset 
analytics in nature. There are experiences associated with small sample size dataset 
problems in regression models, model selection and generalisability of models that 
affect the MRSM solution credibility. In this work, ensembling is used to account for 
the small sample size problems of an MRSM dataset and to avoid the tradition of 
simultaneously optimising only single “best” models for each response. A novel 
ensemble base model(s) selection methodology is used to manage the number of 
simultaneous optimisation computations. Fifteen model selection criteria are used to 
vote for the “best” fitting and parsimonious model and, with it, all response models 
nesting it are included as base models of the ensemble. Simultaneous optimisations, 
and frequency analysis of solutions and model complexities are performed to arrive 
at a solution. The ensemble solution is estimated by weighted averaging of 
simultaneous optimisation solutions using the solution frequencies. When the 

methodology is applied to the rubber covered conveyor belt problem of Pavolo and 
Chikobvu (2022), the same estimated credible results are obtained, albeit with a 

fewer simultaneous optimisations computations. The results also show that the 
“best” fitting and parsimonious model is an under-fit, and its solution is different 
from the credible ensemble solution.  The approach is recommended for similar small 
sample size problems. 

Keywords: Multiple response surface methodology, Ensembling, Small data 
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1.0 Introduction 

1.1 The Nature of Multiple Response Surface Methodology 

Multiple response surface methodology (MRSM) uses mathematical and statistical 
tools to simultaneously optimise multiple responses of a process. MRSM is small 
sample data analytics in nature to alleviate the cost of experimentally generating large 
data. The current MRSM conceptual framework selects a single “best” model for each 
response for simultaneous optimisation and this approach experiences credibility 
problems associated with uncertainties related to regression modelling and model 
selection as both are data dependant, hence the interest in ensembling. Wang (2008) 
defined an ensemble as a system of individual models/algorithms working in parallel 
and whose outputs are combined by a suitable fusion strategy to produce a single 
answer for a given problem. 

In statistics, small sample size datasets are always a challenge to work with in 
regression modelling, model selection, optimisation and prediction. The credibility of 
models obtained from regressing small sample size MRSM datasets is suspect and 
generalisability gets worse the smaller the size of the dataset (Xu and Goodacre, 2018) 
(Jenkins & Quintana-Ascencio, 2020; Rawlings, Pantula, & Dickey, 1998). Zucchini 
(2000) mentions that small sample size datasets produce many competing candidate 
models with a measure of goodness of fit to the small sample size dataset without a 
clear best model because data will be insufficient to effectively approximate a single 
“best” response model of the “truth”. The problem of model under- and overfitting is 
therefore common. Ensembling, according to Dietterich (2000), caters for working 
with multiple good competing models reminiscent of Lieberman’s (2009) Common 
Task Framework. The advantages of ensembling theory are yet to be meaningfully 
exploited in MRSM. This work employs ensembling in MRSM as a way of accounting 
for small sample size problems, and as it has been successfully used in machine 
learning (Ahangi, Langroudi, Yazdanpanah, & Mirroshandel, 2019; Hu, Zhou, Liu, & 
Tang, 2019; Yang, Hwa Yang, B Zhou, & Y Zomaya, 2010). 

There are so many classical model selection (MS) criteria available in literature 
(Burnham & Anderson, 2002; Claeskens & Hjort, 2008; Schomaker & Heumann, 2020). 
The selection of a best fitting and parsimonious model would itself suffer from 
uncertainty because MS criteria do not always agree (Schomaker & Heumann, 2020) 
and there is also small sample size inefficiency to worry about (Hurvich and Tsai, 
1989). Since MRSM involves multiple responses, the credibility of the results is 
affected by simultaneous optimisation of several single “best” models selected with 
uncertainty. The selection of single “best” models for each response using classical MS 
criteria, a tradition in MRSM, is avoided in this work. Empirical studies have shown 
that ensembling improves on single models in regression problems (Bauer and 
Kohavi, 1999) (Banfield, Hall, Bowyer, & Kegelmeyer, 2006; Breiman, 2001; Dietterich, 
2000; Sohn & Shin, 2007). Practically, predictive performances of single models have 
been improved by ensembling in various application fields (Kazienko, Lughofer, & 
Trawiński, 2013; Menahem, Shabtai, Rokach, & Elovici, 2009; Merkwirth et al., 2004; 
Polikar et al., 2008; Yang et al., 2010). 

There are many methodologies for simultaneous optimisation of response models. 
The desirability function (Costa, Lourenço, & Pereira, 2011; Derringer, 1994) and loss 
function (Murphy et al., 2005) approaches are popular among MRSM practitioners 
(Bakhtiarifar, Bashiri, & Amiri, 1999). Other approaches include compromise 
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programming (Govindaluri & Cho, 2007), goal programming \ (Kovach, Cho, & Antony, 
2008; Xu, Lin, Tang, & Xie, 2004), inspection of contour plots (Sivertsen et al., 2007), 
physical programming (Kovach, Cho, & Antony, 2008), Bayesian probability-based 
(Peterson, Miro-Quesada, & del Castillo, 2009), neural networks (Noorossana, 
Davanloo Tajbakhsh, & Saghaei, 2009), vectorial optimisation (Ortiz, Sarabia, Herrero, 
& Sánchez, 2006), weighted Tchebycheff formulations (Dächert, Gorski, & Klamroth, 
2012) and modified ε-constraint method (Lee, Kim, & Köksalan, 2012). Though these 
approaches have their own merits, computational complexity and lack of clear 
recommendations for proper use are major reasons by which they are of little practical 
use or appeal to non-statistician practitioners (Costa & Lourenço, 2014). At the same 
time, they are based on the traditional simultaneous optimisation of single “best” 
models for each response, which ignores the problems related to small sample size 
MRSM dataset generated models and the use of data dependant classical MS criteria. 
Pavolo and Chikobvu (2022) employed an ensembling methodology that totally 
avoided the use of classical model selection criteria to obtain credible cure time 
estimates for a rubber covered conveyor belting cure time problem, albeit, after 
performing a relatively large number of simultaneous optimisations. 

The aim of this work is to reduce the number of ensemble base models from that of 
the multiple simultaneous optimisation ensemble of Pavolo and Chikobvu (2022), yet 
maintaining credibility in the solution estimate. The novel methodology of (i) selecting 
a “best” fitting, parsimonious and prediction model using multiple mixed (best fit, 
parsimonious and prediction) MS criteria, and (ii) adding all possible response models 
nesting the model to the set of ensemble base models achieved the same credible 
result with fewer base models to Pavolo and Chikobvu (2022) rubber covered 
conveyor belting cure time estimation problem using the same small sample size 
MRSM dataset (Annexure 1).  The results suggest that the best fitting and 
parsimonious model is probably an under-fit and this contributes to the error of 
optimism. 

The rest of the paper is organised as follows: Section 2.0 presents the materials and 
solution methodology in more detail; Section 3.0 presents the results and discussions; 
Section 4.0 presents the conclusion; and the list of References is in the final Section. 

2.0 The Materials and Methods 

2.1 The Rubber Covered Conveyor Belting Problem 

Rubber covered conveyor belting is used in agriculture, manufacturing and mining 
industries for cost effective conveyancing of bulk inputs or products. The major failures of 
conveyor belting are breakage, component separation and rubber cover excessive wear 
(Bortnowski, Kawalec, Król, & Ozdoba, 2022; Zimroz & Król, 2009). Under design of 
conveyor belting break strength or over loading during operation result in breakage. 
Belting component separation is due to bonding failure. Rubber cover wear is resisted by 
compound hardness. For every conveyor belt manufactured, break strength, adhesion and 
cover hardness are measured and checked for conformance with customer specifications 
and product quality standard requirements. More belting life is obtained by increasing 
cover hardness and adhesion to prevent early conveyor belting failure. This may result in 
changes to the specifications of cover and skim compounds (see Figure 1 for a rubber 
covered conveyor belting construction structure). 
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Figure 1: Components of a rubber covered conveyor belt. 

Source: image.png (499×305) (uniqueconveyorbelting.com) 

The rubber conveyor belt is constructed at a calendaring machine, then vulcanised 
at either an intermittent or continuous press.  The general process model of the 
vulcanising process is shown in Figure 2. 

 
Figure 2: Vulcanization process model showing the desired minimum quality 

requirements. 
Source: Author’s own compilation 

The two fixed inputs of the vulcanising process are cure temperature (1500C) and 
cure pressure (150bars). The variable inputs are total rubber thickness (mm) and cure 
time (minutes). The total rubber thickness is the sum of the top and bottom cover 
thicknesses and the total skim thickness. The cover and skim compounds have 
different specifications and cure properties. The skim compound specification 
determines the adhesion value of the belting components which resists separation. 
The synthetic fabric determines the breaking strength of the conveyor belting. In a 
case reported in Pavolo and Chikobvu (2022), the minimum requirements for 

https://www.uniqueconveyorbelting.com/wp-content/uploads/2019/09/image.png
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adhesion and cover hardness are 12N/mm and 600 Shore hardness, respectively. The 
client wants a table to present to the Shop floor in a work instruction of the form: 

Table 1: Showing the tabular form required in work instruction 
Rubber Thickness, 𝑅𝑖 (mm) 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Cure Time, 𝑇𝑖 (min.) T7 T8 T9 . . . . . . . . . . T20 

Source: Pavolo and Chikobvu (2021) 

In Table 1, for a rubber thickness 𝑅𝑖 = 𝑖(𝑚𝑚), the cure time is 𝑇𝑖 . The cure time 
estimation problem is a multiple response problem with two variable inputs, rubber 
thickness and cure time, and two responses, adhesion and cover hardness.  The cure 
times for each of the given conveyor belting total rubber thicknesses were required to 
be determined for the vulcanisation process. 

2.2 Modelling the problem 

The cure time estimation problem is an intractable (np-hard) constrained 
optimisation problem of the form: 

𝑴𝒊𝒏𝒊𝒎𝒊𝒔𝒆  𝑇𝑖 = 𝑓(𝑅𝑖),                                                                                                      (1) 
Given 
𝐴𝑑ℎ𝑒𝑠𝑖𝑜𝑛 (𝑇𝑖 , 𝑅𝑖) ≥ 12𝑁/𝑚𝑚,                                                                                       (2) 
𝐻𝑎𝑟𝑑𝑛𝑒𝑠𝑠(𝑇𝑖 , 𝑅𝑖)  ≥ 60 𝑆ℎ𝑜𝑟𝑒 ℎ𝑎𝑟𝑑𝑛𝑒𝑠𝑠,                                                                   (3) 
with 𝑅𝑖  as it is given in Table 1. 

To solve the above problem requires that the two constraint relationships of 
adhesion and hardness with cure time and rubber thickness be established first. This 
is done by first running an MRSM experiment, to obtain a small sample size MRSM 
dataset which is then used in regression modelling to obtain the relationships below. 

𝐴𝑑ℎ𝑒𝑠𝑖𝑜𝑛 = 𝛽0 + 𝛽1𝑇𝑖 + 𝛽2𝑅𝑖 + 𝛽12(𝑇𝑖 ∗ 𝑅𝑖) + 𝛽11𝑇𝑖
2 + 𝛽22𝑅𝑖

2 + 𝜀,                                      (4) 

𝐶𝑜𝑣𝑒𝑟 ℎ𝑎𝑟𝑑𝑛𝑒𝑠𝑠 = 𝛽0 + 𝛽1𝑇𝑖 + 𝛽2𝑅𝑖 + 𝛽12(𝑇𝑖 ∗ 𝑅𝑖) + 𝛽11𝑇𝑖
2 + 𝛽22𝑅𝑖

2 + 𝜀,                    (5) 

Or simply using model notation [𝑇𝑖 , 𝑅𝑖, (𝑇𝑖 ∗ 𝑅𝑖), 𝑇𝑖
2, 𝑅𝑖

2] 

where 𝛽0is the intercept and 𝛽1, 𝛽2, 𝛽12, 𝛽11, and 𝛽22 are estimates of parameters 
for cure time (𝑇𝑖), and rubber thickness (𝑅𝑖), the cure time by rubber thickness 

interaction term (𝑇𝑖 ∗ 𝑅𝑖), and the second order terms (𝑇𝑖
2) and (𝑅𝑖

2), respectively. The 
two response models are then simultaneously optimised to obtain the minimum 
integral value of 𝑇𝑖  that simultaneously give an adhesion of 12N/mm and cover 
hardness of 600 Shore A hardness for each rubber thickness of Table 1. 

2.2 The theory of ensembling 

The main theory behind ensembling is directed towards bias-variance-covariance 
decomposition. Geman, Bienenstock, and Doursat (1992) performed a bias-variance 
decomposition of a single regression model as shown: 

𝐸{[𝑓𝑖 − E(𝑓)]}
2

=  [E(𝑓𝑖) − E(𝑓)]2 + E{[𝑓𝑖 − E(𝑓𝑖)]}2.                                                       (6) 

where  𝑓𝑖  is the fitted value and E(𝑓) is the expected value of the function 𝑓. This 
decomposition can be reduced to 
𝑀𝑆𝐸(𝑓) = (bias(𝑓))2 + var(𝑓).                                                                                                      (7) 

Ueda and Nakano (1996) then produced the bias-variance-covariance 
decomposition of an ensemble. In this decomposition it is assumed that: 
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𝑓𝑒𝑛𝑠 =
1

𝑘
 × ∑ (𝑓𝑖)

𝑘

𝑖=1
,                                                                                                                           (8) 

where 𝑓𝑒𝑛𝑠 is the ensemble mean square error and 𝑘 is the number of base models in 
the ensemble. Then 

𝐸{[𝑓𝑒𝑛𝑠 − 𝐸(𝑓)]}2 =  𝐵𝑖𝑎𝑠2 + (
1

𝑘
)  × 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 + (1 −  

1

𝑘
)  × 𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒,                       (9) 

where 

𝐵𝑖𝑎𝑠 =
1

𝑘
× ∑ [𝑓𝑖 − E(f)]]

𝑘

𝑖=1 
 ,                                                                                                        (10) 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =
1

𝑘
× ∑ E[𝑓𝑖 − E(𝑓𝑖)]2𝑘

𝑖=1 
,                                                                                          (11) 

𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒
1

𝑘(𝑘−1)
× ∑ .𝑘

𝑖=1 {∑ E[𝑓𝑖 − E(𝑓𝑖)][𝑓𝑗 − E(𝑓𝑗)]
𝑘

𝑗=1,(𝑖≠𝑗)
}.                                       (12) 

This suggests that an increase in prediction performance can be expected if it is 
possible to design an ensemble with low-correlated individual models, low bias and 
low variance. The stochastic discrimination theory (Kleinberg, 1990), the margin 
theory (Schapire et al., 1998), and the strength-correlation theory Bernard, Heutte, 
and Adam (2010); (Breiman, 2001), have all been proved to agree with the bias-
variance-covariance decomposition theory (Reu et al., 2016). Hansen and Salamon 
(1990) concluded that a necessary and sufficient condition for an ensemble of models 
to be more accurate than any of its constituent individual members is if the base 
models are both accurate and diverse. 

Bias – Variance Trade-off Characteristic 

 
Figure 3: The variation of bias and variance with the model complexity. 

Source: http://scott.fortmann-roe.com/docs/BiasVariance.html 

The bias – variance trade-off characteristic, Figure 3, shows that with under-fitted 
models the bias is high and falls asymptotically with model complexity whilst variance 
is low and increases with complexity (Emmert-Streib & Dehmer, 2019). Overfitting, is 
then the addition of more predictors to the optimum complexity model resulting in the 
increase of variance (diversity) but continued reduction of bias (improvement in 
accuracy) in accordance with equation (2). 

In the same line of argument, an ensemble with a set of base models including the 
optimum complexity model plus selected overfitted models nesting it should give an 
accurate predicted solution with averaged minimum or no bias and variance. 

http://scott.fortmann-roe.com/docs/BiasVariance.html
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In this work a novel method of pruning potential competing response models is 
employed in which (i) fifteen classical MS criteria (see Annexure 2) are used to vote 
for the best fitting and parsimonious adhesion response model from the all possible 
regression modelling set (see Annexure 3), then (ii) adding all other models that have 
this response model nested in them to the set of base models of the ensemble. This 
reduces the compliment of ensemble base models drastically from the multiple 
simultaneous optimisation ensemble of Pavolo and Chikobvu (2022), shown in 
Annexure 4, implying a fewer number of simultaneous optimisations performed to 
obtain the same credible cure time estimates. 

The solution methodology is summarised in Figure 4. 

 
Figure 4: The flow chart for the solution methodology 

A frequency analysis of the solutions against model complexity is performed in the 
analysis of under- and overfitting. 

3.0 Results 

The results of the best fitting parsimonious adhesion response model selection are 
given in Table 2. The fifteen classical model selection criteria are shown in the first 
column of the table. The six adhesion response models that had at least one MS 
criterion selection are shown in the first row in summary notation. Each column of the 
response models has the corresponding criterion values. The selection criteria values 
are shown in red in each column. For example, in the second row, the classical 
prediction MS criteria R2 (pr.) selected the adhesion response model [(𝑇𝑖 ∗ 𝑅𝑖), 𝑅𝑖

2] as 
best. The VOTES row shows the total selections for each response model. The model 
with the highest selections is the adhesion response model [(𝑇𝑖 ∗ 𝑅𝑖), 𝑅𝑖

2], with ten 
votes and thus the best fitting and parsimonious model, having been chosen by the MS 
criteria R2 (pr.), Cp-k, PRESS, AIC, BIC, AICc, KICc, KIC, MKIC and TIC. 

The adhesion response model [(𝑇𝑖 ∗ 𝑅𝑖), 𝑅𝑖
2] is shown in its expanded form as 

equation (6). This summary and expanded concept is applicable to all models used in 
this paper. 
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𝐴𝑑ℎ𝑒𝑠𝑖𝑜𝑛 = 10.497 +  0.0203(𝑇𝑖 ∗ 𝑅𝑖) − 0.0258𝑅𝑖
2                                                                           (13) 

Table 2: Voting for the best fitting and parsimonious model 

MODEL 
[𝑇𝑖 , 𝑅𝑖 ,(𝑇𝑖 ∗ 𝑅𝑖), 

𝑇𝑖
2, 𝑅𝑖

2] 

[𝑇𝑖 , (𝑇𝑖 ∗ 𝑅𝑖), 

𝑇𝑖
2, 𝑅𝑖

2] 

[𝑅𝑖 ,( 𝑇𝑖 ∗

𝑅𝑖), 𝑅𝑖
2] 

[(𝑇𝑖 ∗ 𝑅𝑖), 

𝑅𝑖
2] 

[𝑇𝑖 , 𝑅𝑖 , 

𝑅𝑖
2] 

[𝑇𝑖 ,( 𝑇𝑖 ∗
𝑅𝑖)] 

R2 (pr.) 26.5 51.5 49.9 65.4 49.4 52 
Adeq.  pr. 10.4 4.1 5.7 1.8 11.9 5.4 

Cp-k 1.0 0.1 0 0 2.1 0 
PRESS 88.1 59.3 81.3 42.1 62.2 58.6 

AIC 11.7 9.8 11.6 9.8 13 17.3 
BIC 15.1 12.6 13.9 11.5 15.3 19 

AICc 20.2 14.8 14.3 11 15.7 18.5 
APCp 2.9 2.4 2.6 2.9 2.6 4.0 
SBC 1.9 1.7 4.9 4.8 6.1 11.9 
HQc 1.1 1.1 4.3 4.5 5.6 11.5 
KICc 87.3 64.4 51.2 38.1 52.6 45.6 
HQ 0.5 0.5 4.2 4.2 5.6 11.7 
KIC 20.7 17.8 18.6 15.8 20 23.3 

MKIC 18.2 12 9.1 5.4 9.8 10.7 
TIC 13.7 11.8 13.6 11.8 15 19.3 

VOTES 2 6 1 10 1 1 

The same best fitting and parsimonious model is presented in Table 3 in another 
summarised form. 

Table 3: Best fitting and parsimonious response model 

MODEL β̂0 β̂1 β̂2 β̂12 β̂11 β̂22 

[(𝑇𝑖 ∗ 𝑅𝑖), 𝑅𝑖
2] 10.49700   0.02025  -0.02579 

Table 4 shows the seven adhesion response models, with the best fitting and 
parsimonious model in the first row, that nest the adhesion response model [(𝑇𝑖 ∗ 𝑅𝑖), 

𝑅𝑖
2]  as shown with the yellow shading in the summarised form similar to Table 3. It 

is important to note that the columns with the coefficients of the intercept, the (𝑇𝑖 ∗

𝑅𝑖) and the 𝑅𝑖
2 terms have values for all the models. This is the confirmation for the 

nesting. 

Table 4: Response models nesting the “best” fitting and parsimonious model 

MODEL β̂0 β̂1 β̂2 β̂12 β̂11 β̂22 

[(𝑇𝑖 ∗ 𝑅𝑖), 𝑅𝑖
2] 10.49700   0.02025  -0.02579 

[𝑇𝑖 i, (𝑇𝑖 ∗ 𝑅𝑖), 𝑅𝑖
2] 9.14000 0.09100  0.01559  -0.02242 

[𝑅𝑖 , (𝑇𝑖 ∗ 𝑅𝑖), 𝑅𝑖
2] 11.08000  -0.09800 0.02078  -0.02309 

[(𝑇𝑖 ∗ 𝑅𝑖), 𝑇𝑖
2, 𝑅𝑖

2] 10.39000   0.01890 0.00054 -0.02485 

[𝑇𝑖 , 𝑅𝑖 , (𝑇𝑖 ∗ 𝑅𝑖), 𝑅𝑖
2] 8.61000 0.10700 0.04700 0.01450  -0.02309 

[𝑇𝑖 , (𝑇𝑖 ∗ 𝑅𝑖), 𝑇𝑖
2, 𝑅𝑖

2] 1.95000 0.75900  0.01676 -0.01491 -0.02336 

[𝑅𝑖 , (𝑇𝑖 ∗ 𝑅𝑖), 𝑇𝑖
2, 𝑅𝑖

2] 11.21000  -0.11300 0.02150 -0.00026 -0.02317 

[𝑇𝑖 , 𝑅𝑖 ,(𝑇𝑖 ∗ 𝑅𝑖), 𝑇𝑖
2, 𝑅𝑖

2] 0.74000 0.80400 0.09700 0.01450 -0.01510 -0.02476 

Cure time estimations were obtained by simultaneous optimisation of the adhesion 
response models with the hardness response model [𝑇𝑖 , 𝑅𝑖, (𝑇𝑖 ∗ 𝑅𝑖), 𝑇𝑖

2], the only 
hardness response model which has a conforming response surface (Pavolo & 
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Chikobvu, 2022), and is shown in its expanded form in equation (14). 

𝐻𝑎𝑟𝑑𝑛𝑒𝑠𝑠 = 29.100 + 2.84𝑇𝑖 − 0.918𝑅𝑖 +  0.0321(𝑇𝑖 ∗ 𝑅𝑖) − 0.061𝑇𝑖
2                            (14) 

Table 5 shows the cure time estimations obtained by simultaneous optimisation of 
the adhesion response models with the hardness response model [𝑇𝑖 , 𝑅𝑖, (𝑇𝑖 ∗ 𝑅𝑖), 𝑇𝑖

2]. 
The shading in yellow shows where there is majority agreement of estimated cure 
times in each column of a given rubber thickness. As an example, for the column  𝑖 (mm) 

= 19mm rubber thickness the first seven adhesion response models agree on the cure 
time estimate of 29 minutes, with the last response model estimating 28 minutes. 

Table 5: Cure time estimates after simultaneous optimisation 
𝑖 (mm) 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

[(𝑇𝑖 ∗ 𝑅𝑖), 

𝑅𝑖
2] 

21 22 22 23 23 24 24 24 25 25 26 27 29 30 

[𝑇𝑖 i, (𝑇𝑖 ∗

𝑅𝑖), 𝑅𝑖
2] 

21 22 22 23 23 24 24 24 25 26 27 28 29 30 

[𝑅𝑖 , (𝑇𝑖 ∗

𝑅𝑖), 𝑅𝑖
2] 

21 22 22 23 23 24 24 24 25 26 27 28 29 30 

[(𝑇𝑖 ∗ 𝑅𝑖), 

𝑇𝑖
2, 𝑅𝑖

2] 
21 22 22 23 23 24 24 24 25 26 27 28 29 30 

[𝑇𝑖 , 𝑅𝑖 , 
(𝑇𝑖 ∗

𝑅𝑖), 𝑅𝑖
2] 

21 22 22 23 23 24 24 24 25 26 27 28 29 30 

[𝑇𝑖 , (𝑇𝑖 ∗

𝑅𝑖), 𝑇𝑖
2, 

𝑅𝑖
2] 

21 22 22 23 23 24 24 24 25 25 26 27 29 30 

[𝑅𝑖 , (𝑇𝑖 ∗

𝑅𝑖), 𝑇𝑖
2, 

𝑅𝑖
2] 

21 22 22 23 23 24 24 24 25 26 27 28 29 30 

[𝑇𝑖 , 𝑅𝑖 , (𝑇𝑖 ∗
𝑅𝑖), 

𝑇𝑖
2, 𝑅𝑖

2] 
21 22 22 23 23 24 24 24 25 25 25 27 28 31 

Frequency analysis of the estimated solutions in Table 5 shows three competing 
solutions coded S1, S2 and S3 in Table 6 and occurring 1, 2, and 5 times respectively. 

Table 6: Frequency analysis of solutions 
𝑖 (mm) 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Frequency 

S1 21 22 22 23 23 24 24 24 25 25 25 27 28 31 1 
S2 21 22 22 23 23 24 24 24 25 25 26 27 29 30 2 
S3 21 22 22 23 23 24 24 24 25 26 27 28 29 30 5 

The three solutions in Table 6 and their frequencies are graphed in Figure 5 for a 
visual presentation of their distribution. 
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Figure 5: The solution frequency graph 

Using ensembling, the frequencies 5, 2, and 1 (sum = 8) are converted to weights 
5

8
= 0.625, 

2

8
= 0.250 and 

1

8
= 0.125 respectively, where the sum of the weights is 1. For 

any rubber thickness 𝑅𝑖, the weighted average cure time is computed as: 

𝑊𝑡𝑑. 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 = 𝑊𝑡1 ∗ 𝑆1 + 𝑊𝑡2 ∗ 𝑆2 + 𝑊𝑡3 ∗ 𝑆3                                                                     (15) 
where 𝑊𝑡𝑖 is the weight for solution 𝑆𝑖 , and ∑ 𝑊𝑡𝑖

𝑛
1 = 1. For example, for a rubber 

thickness 𝑅20 (of 20mm), the weighted average is computed as: 
𝑊𝑡𝑑. 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 = 0.125 ∗ 31 + 0.25 ∗ 30 + 0.625 ∗ 30 = 30 

Table 7: Weighted average estimation of cure times 
Rt (mm) 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Wt. 

S1 21 22 22 23 23 24 24 24 25 25 25 27 28 31 0.125 
S2 21 22 22 23 23 24 24 24 25 25 26 27 29 30 0.25 
S3 21 22 22 23 23 24 24 24 25 26 27 28 29 30 0.625 

Wtd. Average 21 22 22 23 23 24 24 24 25 26 27 28 29 30  

The ensemble estimated weighted average solution in Table 7 is equivalent to the 
highest frequency solution S3 in Table 6 since this is the most dominant solution.  The 
ensemble theoretical accuracy is shown in Table 8. 

Table 8: Showing the ensemble theoretical accuracy at simultaneous optimisation 
   Adhesion  Hardness  

Model MSPE Bias Var. Covar MSPE Bias Var. Covar. 
[(𝑇𝑖 ∗ 𝑅𝑖), 𝑅𝑖

2] 0.143 0.385 0.061  0.184 0.402 0.023  
[𝑇𝑖 i, (𝑇𝑖 ∗ 𝑅𝑖), 

𝑅𝑖
2] 0.142 0.354 0.016  0.096 0.285 0.014  

[𝑅𝑖 , (𝑇𝑖 ∗
𝑅𝑖), 𝑅𝑖

2] 0.151 0.370 0.014  0.096 0.285 0.014  

[(𝑇𝑖 ∗ 𝑅𝑖), 𝑇𝑖
2, 

𝑅𝑖
2] 0.105 0.301 0.015  0.096 0.285 0.014  

[𝑇𝑖 , 𝑅𝑖 , (𝑇𝑖 ∗
𝑅𝑖), 𝑅𝑖

2] 0.099 0.277 0.022  0.096 0.285 0.014  

[𝑇𝑖 , (𝑇𝑖 ∗ 𝑅𝑖), 
𝑇𝑖

2, 𝑅𝑖
2] 0.495 0.619 0.113  0.076 0.250 0.012  

[𝑅𝑖 , (𝑇𝑖 ∗ 𝑅𝑖), 
𝑇𝑖

2, 𝑅𝑖
2] 0.127 0.332 0.016  0.096 0.285 0.014  

[𝑇𝑖 , 𝑅𝑖 , (𝑇𝑖 ∗
𝑅𝑖), 𝑇𝑖

2, 𝑅𝑖
2] 0.156 0.616 0.137  0.065 0.220 0.012  

Ensemble 
Accuracy 0.177 0.407 0.049 0.021 0.101 0.287 0.015 0.023 
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The ensemble theoretical accuracy values at simultaneous optimisation for both 
adhesion and hardness are fairly accurate at MSPE = 0.177, bias = 0.407, variance = 
0.049, covariance = 0.021 and MSPE = 0.101, bias = 0.287, variance = 0.015 and 
covariance =0.023, respectively. 

An analysis of the model complexity with the highest number of solutions can 
indicate which complexities maybe under- or over-fit. Figure 6 shows the frequency 
distribution of each model complexity among the solutions. 

 
Figure 6: Showing the model complexity frequency graph 

It is observed in Figure 6 that: 
 There is only one adhesion response model with a model complexity of 3. 
 That both the model complexities of 4 and 5 have three models each. 
 There is only one model with a complexity of 6, the full model. 

When solution complexity, e.g. S3(5) implying solution S3 of complexity 5, of 
adhesion response models is sorted in increasing order of MSPE and Bias at 
simultaneous optimisation and plotted as a bar chart, as shown in Figure 7, important 
observations emerge. 

 
Figure 7: Showing the trend of Solution (Complexity) plotted against MSPE and Bias at 

simultaneous optimisation. 

Solution MSPE Bias

S3(5) 0.099 0.277

S3(4) 0.105 0.301
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It is observed in Figure 7 that: 
i) Solution S3 has the least MSPE and Bias and hence is the best solution estimate to 

the problem. However, complexity 5 adhesion response models with solution S3, 
have better average MSPE and Bias than complexity 4 models of the same solution. 

ii) The solution of the “best” fit and parsimonious adhesion response model, S2 with 
complexity 3, has a larger MSPE and bias than all the five adhesion response models 
with solution estimate S3. This could be the result of the compromise that occurs at 
simultaneous optimisation with the selected hardness model manifesting as the 
error of optimism. 

iii) Solution S1 which is from the adhesion full model of complexity 6, and solution S2 
from the adhesion response model with model complexity 5 appear to be over-fit. 

4.0 Discussion 

Results vs. objective of reduction of number of simultaneous optimisations 

The proposed methodology has shown that it is possible to reduce the number of 
simultaneous optimisations performed by the Multiple Simultaneous Optimisations 
Ensemble of Pavolo and Chikobvu (2022) whilst obtaining the same result and with similar 
accuracy. This reduces computational time and opens possibilities for generalisation of the 
methodology to other more complex simultaneous optimisation problems. 

4.1 Results vs. objective of maintaining credibility. 

The current MRSM conceptual framework selects a single best model for each 
response for simultaneous optimisation and accommodates model selection criterion 
uncertainty and hence model uncertainty. The proposed methodology accounts for 
model selection uncertainty by voting for the most parsimonious model with the best 
fit to the dataset using fifteen model selection criteria. Uncertainty is further 
neutralised by ensembling multiple results obtained from simultaneous optimisation 
of models nesting the selected best model. Ensembling takes advantage of a point 
raised by Zucchini (2000) that “small sample size datasets produce many competing 
candidate models with a measure of good fitness to the small sample size dataset 
without a clear best model because data will be insufficient to effectively approximate 
a single best”. This is because ensembling the competing good models by making them 
base models of the same ensemble minimises loss of information contained in them. 

The fact that five of the eight estimated results were similar and also similar to the 
ensemble result further buttresses the credibility. At the same time, the fact that the 
ensemble estimated result is similar to the result obtained by the Multiple 
Simultaneous Optimisations Ensemble of Pavolo and Chikobvu (2022) shows the 
credibility of the proposed methodology. 

4.3The model complexity perspective and error of optimism 

Of interest is how the majority voted best fit and parsimonious model failed to give 
the credible result. The failure to agree with the majority predicted and ensemble 
result has been explained in machine learning literature as the error of optimism. The 
inefficiency of a response model with best fit to a dataset to predict beyond the dataset 
is termed the error of optimism and gets worse the smaller the sample size. 
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Complexity analysis makes the best adhesion response model appear as an under-
fit. This is because MSPE, in this case, estimates prediction capability within the 
context of simultaneous optimisation, not just good fitness to the small sample size 
MRSM dataset used to learn the model, hence exposing the error of optimism. The 
prediction performance is, though, affected by simultaneous optimisation 
compromise and the hardness response model it simultaneously optimises with. 

4.4 Methodology generalisability 

The critical question is for the generalisability of the proposed methodology to 
more complex small sample size MRSM simultaneous optimisation problems. 
Generalisability to (i) two response problems with multiple good models for each 
response then (ii) multiple response problems in general. 

The current problem had one response with multiple good models and a second 
response with a single good model. However, most two-response small sample size 
MRSM simultaneous optimisation problems have multiple good models for each 
response. The methodology is applicable to each response before simultaneous 
optimisations and ensembling of results. Coding the methodology in R can make the 
process of obtaining the solution much faster. 

Multiple response problems with two or more responses are obviously a challenge. 
Research needs to be done on the best way to obtain simultaneously optimised 
estimated results for ensembling. This may require research into how other 
methodologies like Derringer’s (1994) desirability functions can be used to 
simultaneously obtain optimised results for ensembling. Artificial neural networks 
could be another possible methodology. 

5.0 Conclusion 

The method of pruning base models for the ensemble by (i) selecting the best fitted 
and parsimonious response model using multiple model selection criteria voting, then 
(ii) adding all the other response models with the “best model” nested in them reduces 
the number of simultaneous optimisations performed to the multiple simultaneous 
optimisations ensemble of Pavolo and Chikobvu (2022). 
It is also noted that, 
(a) Response models can be classified using model complexity as under- or over-fit 

with a simple complexity analysis. 

(b) The credible solution does not necessarily come from the “best” fit and 
parsimonious model as chosen by majority vote of classical MS criteria. This is a 
manifestation of the error of optimism in which the best model to fit the small 
sample size MRSM dataset is inefficient in generalisation. 

This method of selecting base models for an ensemble for simultaneous 
optimisation is recommended for similar small sample size MRSM problems. 

6.0 Implications of the Study 

6.1 To the Conveyor Belting Manufacturing Industry 
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The study proposes a simple methodology of estimating credible conveyor belting 
curing times for productivity and quality for different total conveyor belting rubber 
thicknesses. Every time product quality requirements change which then causes the 
change of conveyor belting rubber compound specifications, cure times have to be re-
estimated. The methodology becomes handy in all such incidences. 

6.2 To generality of practitioners 

To the generality of practitioners, the proposed approach is a novel and credible 
way of estimating process parameters from a small sample size MRSM dataset and it 
accounts for small sample size inefficiencies and problems that affect the accuracy of 
simultaneous optimisation results. 

6.3 To academia in generality 

The effect of the error of optimism on estimated results is demonstrated in the 
context of response models learned from an MRSM small sample size dataset through 
a simple model complexity analysis. This phenomenon is indeed a problem and should 
be accounted for in every MRSM small sample size dataset problem. 

7.0 Limitations and Future Research Directions 

7.1 Limitations 

The proposed methodology was compared with the Multiple Simultaneous 
Optimisations Ensemble of Pavolo and Chikobvu (2022). It would gain more acclaim if 
it is compared with other methodologies as well as using other datasets. At the same 
time, the methodology needs to be tested with more complex examples. 

A simulation would also need to be done to buttress credibility of methodology in 
such small sample size problems. 

7.2 Future Research Directions 

There is need to research on how the methodology fares with more complex 
problems, that is, (i) problems with more responses than two and (ii) problems with 
more than one good response models for each response. 

Further research is also needed to look at how simulation methodology can be used 
to justify credibility in small sample size MRSM problems. 

There is also need to look at how ensembles of other available simultaneous 
optimisation methodologies can fare with small sample size MRSM datasets. 

References 

Ahangi, A., Langroudi, A. F., Yazdanpanah, F., & Mirroshandel, S. A. (2019). A novel fusion 
mixture of active experts algorithm for traffic signs recognition. Multimedia Tools and 
Applications, 78, 20217-20237. https://doi.org/10.1007/s11042-019-7391-0 
Bakhtiarifar, M. H., Bashiri, M., & Amiri, A. (1999). Optimization of multi-response 
problems with continuous functional responses by considering dispersion effects. 

https://doi.org/10.1007/s11042-019-7391-0


A Novel Ensemble Base Models Selection Approach for Estimating Credible Rubber Conveyor 
Belting Cure Times from A Small Sample Size Mrsm Dataset 

154 

Scientia Iranica, 25(4), 2267-2281. https://doi.org/10.24200/sci.2017.4458 
Banfield, R. E., Hall, L. O., Bowyer, K. W., & Kegelmeyer, W. P. (2006). A comparison of 
decision tree ensemble creation techniques. IEEE transactions on pattern analysis and 
machine intelligence, 29(1), 173-180. https://doi.org/10.1109/TPAMI.2007.250609 
Bauer, E. and Kohavi, R (1999) An empirical comparison of voting classification 
algorithms: Bagging, Boosting and variants. Machine Learning, 36(1/2): 105-139 
Bernard, S., Heutte, L., & Adam, S. (2010). A study of strength and correlation in random 
forests. In Advanced Intelligent Computing Theories and Applications: 6th International 
Conference on Intelligent Computing, ICIC 2010, Changsha, China, August 18-21, 2010. 
Proceedings 6 (pp. 186-191). Springer. https://doi.org/10.1007/978-3-642-14831-6_25 
Bortnowski, P., Kawalec, W., Król, R., & Ozdoba, M. (2022). Types and causes of damage 
to the conveyor belt–Review, classification and mutual relations. Engineering Failure 
Analysis, 140, 106520. https://doi.org/10.1016/j.engfailanal.2022.106520 
Breiman, L. (2001). Random Forests. Machine learning, 45, 5-32. 
https://doi.org/10.1023/A:1010933404324 
Burnham, K. P., & Anderson, D. R. (2002). Model Selection and Multimodel Inference: 
A Practical Information-Theoretic Approach. Springer New York, NY. 
https://doi.org/10.1007/b97636 
Claeskens, G., & Hjort, N. L. (2008). Model Selection and Model Averaging (Vol. 330). 
Cambridge University Press. https://doi.org/10.1017/CBO9780511790485 
Costa, N. R., Lourenço, J., & Pereira, Z. L. (2011). Desirability function approach: a review and 
performance evaluation in adverse conditions. Chemometrics and intelligent laboratory 
systems, 107(2), 234-244. https://doi.org/10.1016/j.chemolab.2011.04.004 
Costa, N. R., & Lourenço, J. A. (2014). Optimization criteria ability to depict Pareto 
frontiers. In Proceedings of the World Congress on Engineering (Vol. 2). 
https://www.iaeng.org/publication/WCE2014/WCE2014_pp958-961.pdf 
Dächert, K., Gorski, J., & Klamroth, K. (2012). An augmented weighted Tchebycheff method 
with adaptively chosen parameters for discrete bicriteria optimization problems. Computers 
& Operations Research, 39(12), 2929-2943. https://doi.org/10.1016/j.cor.2012.02.021 
Derringer, G. C. (1994). A balancing act-optimizing a products properties. Quality 
progress, 27(6), 51-58. https://cdnm.statease.com/pubs/derringer.pdf 
Dietterich, T. G. (2000). Ensemble methods in machine learning. In International 
workshop on multiple classifier systems (pp. 1-15). Springer. 
https://doi.org/10.1007/3-540-45014-9_1 
Emmert-Streib, F., & Dehmer, M. (2019). Evaluation of regression models: Model 
assessment, model selection and generalization error. Machine learning and 
knowledge extraction, 1(1), 521-551. https://doi.org/10.3390/make1010032 
Geman, S., Bienenstock, E., & Doursat, R. (1992). Neural networks and the 
bias/variance dilemma. Neural computation, 4(1), 1-58. 
https://doi.org/10.1162/neco.1992.4.1.1 
Govindaluri, S. M., & Cho, B. R. (2007). Robust design modeling with correlated quality 
characteristics using a multicriteria decision framework. The International Journal of 
Advanced Manufacturing Technology, 32, 423-433. https://doi.org/10.1007/s00170-
005-0349-6 
Hansen, L. K., & Salamon, P. (1990). Neural network ensembles. IEEE transactions on 
pattern analysis and machine intelligence, 12(10), 993-1001. 
https://doi.org/10.1109/34.58871 
Hu, R., Zhou, S., Liu, Y., & Tang, Z. (2019). Margin-based Pareto ensemble pruning: an 
ensemble pruning algorithm that learns to search optimized ensembles. 
Computational intelligence and neuroscience, 2019, 7560872. 

https://doi.org/10.24200/sci.2017.4458
https://doi.org/10.1109/TPAMI.2007.250609
https://doi.org/10.1007/978-3-642-14831-6_25
https://doi.org/10.1016/j.engfailanal.2022.106520
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1007/b97636
https://doi.org/10.1017/CBO9780511790485
https://doi.org/10.1016/j.chemolab.2011.04.004
https://www.iaeng.org/publication/WCE2014/WCE2014_pp958-961.pdf
https://doi.org/10.1016/j.cor.2012.02.021
https://cdnm.statease.com/pubs/derringer.pdf
https://doi.org/10.1007/3-540-45014-9_1
https://doi.org/10.3390/make1010032
https://doi.org/10.1162/neco.1992.4.1.1
https://doi.org/10.1007/s00170-005-0349-6
https://doi.org/10.1007/s00170-005-0349-6
https://doi.org/10.1109/34.58871


D. Pavolo et al / Oper. Res. Eng. Sci. Theor. Appl. 6(2)2023 140-159 

155 

https://doi.org/10.1155/2019/7560872 
Hurvich, C., Tsai, C. (1989) Regression and Time Series Model Selection in Small 
Samples, Biometrika, 76, 297-307 
Jenkins, D. G., & Quintana-Ascencio, P. F. (2020). A solution to minimum sample size 
for regressions. PloS one, 15(2), e0229345. 
https://doi.org/10.1371/journal.pone.0229345 
Kazienko, P., Lughofer, E., & Trawiński, B. (2013). Hybrid and Ensemble Methods in 
Machine Learning. Journal of Universal Computer Science, 19(4), 457-461. 
https://doi.org/10.3217/jucs-019-04 
Kleinberg, E. M. (1990). Stochastic discrimination. Annals of Mathematics and 
Artificial intelligence, 1, 207-239. http://machine-
learning.martinsewell.com/ensembles/Kleinberg1990.pdf 
Kovach, J., Cho, B. R., & Antony, J. (2008). Development of an experiment-based robust 
design paradigm for multiple quality characteristics using physical programming. The 
International Journal of Advanced Manufacturing Technology, 35, 1100-1112. 
https://doi.org/10.1007/s00170-006-0792-z 
Lee, D.-H., Kim, K.-J., & Köksalan, M. (2012). An interactive method to multiresponse 
surface optimization based on pairwise comparisons. IIE transactions, 44(1), 13-26. 
https://doi.org/10.1080/0740817X.2011.564604 
Liberman, M. (2010) Fred Jelinek. Comput. Linguist, 36(4):595-599 
Menahem, E., Shabtai, A., Rokach, L., & Elovici, Y. (2009). Improving malware detection 
by applying multi-inducer ensemble. Computational Statistics & Data Analysis, 53(4), 
1483-1494. https://doi.org/10.1016/j.csda.2008.10.015 
Merkwirth, C., Mauser, H., Schulz-Gasch, T., Roche, O., Stahl, M., & Lengauer, T. (2004). 
Ensemble methods for classification in cheminformatics. Journal of chemical 
information and computer sciences, 44(6), 1971-1978. 
https://doi.org/10.1021/ci049850e 
Murphy T. Tsai, K., Allen, J. (2005). A Review of Robust Design Methods for Multiple 
Responses. Research in Engineering Design, 15(4), pp 201-215 
Noorossana, R., Davanloo Tajbakhsh, S., & Saghaei, A. (2009). An artificial neural network 
approach to multiple-response optimization. The International Journal of Advanced 
Manufacturing Technology, 40, 1227-1238. https://doi.org/10.1007/s00170-008-1423-7 
Ortiz, M., Sarabia, L., Herrero, A., & Sánchez, M. (2006). Vectorial optimization as a 
methodogical alternative to desirability function. Chemometrics and intelligent 
laboratory systems, 83(2), 157-168. 
https://doi.org/10.1016/j.chemolab.2005.11.005 
Pavolo, D., & Chikobvu, D. (2022). Estimating Rubber Covered Conveyor Belting Cure 
Times Using Multiple Simultaneous Optimizations Ensemble. Operational Research in 
Engineering Sciences: Theory and Applications, 5(1), 90-106. 
http://dx.doi.org/10.31181/oresta180222016p 
Peterson, J. J., Miro-Quesada, G., & del Castillo, E. (2009). A Bayesian reliability 
approach to multiple response optimization with seemingly unrelated regression 
models. Quality Technology & Quantitative Management, 6(4), 353-369. 
https://doi.org/10.1080/16843703.2009.11673204 
Polikar, R., Topalis, A., Parikh, D., Green, D., Frymiare, J., Kounios, J., & Clark, C. M. 
(2008). An ensemble based data fusion approach for early diagnosis of Alzheimer’s 
disease. Information Fusion, 9(1), 83-95. 
https://doi.org/10.1016/j.inffus.2006.09.003 
Rawlings, J. O., Pantula, S. G., & Dickey, D. A. (1998). Applied regression analysis: a 
research tool. Springer. https://doi.org/10.1007/b98890 

https://doi.org/10.1155/2019/7560872
https://doi.org/10.1371/journal.pone.0229345
https://doi.org/10.3217/jucs-019-04
http://machine-learning.martinsewell.com/ensembles/Kleinberg1990.pdf
http://machine-learning.martinsewell.com/ensembles/Kleinberg1990.pdf
https://doi.org/10.1007/s00170-006-0792-z
https://doi.org/10.1080/0740817X.2011.564604
https://doi.org/10.1016/j.csda.2008.10.015
https://doi.org/10.1021/ci049850e
https://doi.org/10.1007/s00170-008-1423-7
https://doi.org/10.1016/j.chemolab.2005.11.005
http://dx.doi.org/10.31181/oresta180222016p
https://doi.org/10.1080/16843703.2009.11673204
https://doi.org/10.1016/j.inffus.2006.09.003
https://doi.org/10.1007/b98890


A Novel Ensemble Base Models Selection Approach for Estimating Credible Rubber Conveyor 
Belting Cure Times from A Small Sample Size Mrsm Dataset 

156 

Schapire R.E., Freund, Y., Bartlett, P., Lee, W. (1998). Boosting the margin: A new 
explanation for the effectiveness of voting methods. The Annals of Statistics, 26(5), 
1651 - 1686 
Schomaker, M., & Heumann, C. (2020). When and when not to use optimal model 
averaging. Statistical papers, 61(5), 2221-2240. https://doi.org/10.1007/s00362-
018-1048-3 
Sivertsen, E., Bjerke, F., Almøy, T., Segtnan, V., & Næs, T. (2007). Multivariate 
optimization by visual inspection. Chemometrics and intelligent laboratory systems, 
85(1), 110-118. https://doi.org/10.1016/j.chemolab.2006.05.005 
Sohn, S. Y., & Shin, H. (2007). Experimental study for the comparison of classifier 
combination methods. Pattern Recognition, 40(1), 33-40. 
https://doi.org/10.1016/j.patcog.2006.06.027 
Ueda, N., & Nakano, R. (1996). Generalization error of ensemble estimators. In 
Proceedings of International Conference on Neural Networks (ICNN'96) (Vol. 1, pp. 
90-95). IEEE. https://doi.org/10.1109/ICNN.1996.548872 
Wang, W. (2008). Some fundamental issues in ensemble methods. In 2008 IEEE 
International Joint Conference on Neural Networks (IEEE World Congress on 
Computational Intelligence) (pp. 2243-2250). IEEE. 
https://doi.org/10.1109/IJCNN.2008.4634108 
Xu, K., Lin, D. K., Tang, L.-C., & Xie, M. (2004). Multiresponse systems optimization using 
a goal attainment approach. IIE transactions, 36(5), 433-445. 
https://doi.org/10.1080/07408170490426143 
Xu, Y., Goodacre, R. (2018) On Splitting Training and Validation Set: A Comparative 

Study of Cross-Validation, Bootstrap and Systematic Sampling for Estimating the 

Generalization Performance of Supervised Learning. J Anal Test. 2018; 2(3):249-262. 

DOI: 10.1007/s41664-018-0068-2. Epub 2018 Oct 29. PMID: 30842888; PMCID: 

PMC6373628. 

Yang, P., Hwa Yang, Y., B Zhou, B., & Y Zomaya, A. (2010). A review of ensemble 

methods in bioinformatics. Current Bioinformatics, 5(4), 296-308. 

https://www.ingentaconnect.com/content/ben/cbio/2010/00000005/00000004/a

rt00006 

Zimroz, R., & Król, R. (2009). Failure analysis of belt conveyor systems for condition 
monitoring purposes. Mining Science, 128(36), 255–270. 
http://www.miningscience.pwr.edu.pl/Failure-analysis-of-belt-conveyor-systems-
for-condition-monitoring-purposes,59825,0,2.html 
Zucchini, W. (2000). An Introduction to Model Selection. Journal of mathematical 
psychology, 44(1), 41-61. https://doi.org/10.1006/jmps.1999.1276 
 
 
 
 
 
 
 
 
 
 
 
 

https://doi.org/10.1007/s00362-018-1048-3
https://doi.org/10.1007/s00362-018-1048-3
https://doi.org/10.1016/j.chemolab.2006.05.005
https://doi.org/10.1016/j.patcog.2006.06.027
https://doi.org/10.1109/ICNN.1996.548872
https://doi.org/10.1109/IJCNN.2008.4634108
https://doi.org/10.1080/07408170490426143
https://www.ingentaconnect.com/content/ben/cbio/2010/00000005/00000004/art00006
https://www.ingentaconnect.com/content/ben/cbio/2010/00000005/00000004/art00006
http://www.miningscience.pwr.edu.pl/Failure-analysis-of-belt-conveyor-systems-for-condition-monitoring-purposes,59825,0,2.html
http://www.miningscience.pwr.edu.pl/Failure-analysis-of-belt-conveyor-systems-for-condition-monitoring-purposes,59825,0,2.html
https://doi.org/10.1006/jmps.1999.1276


D. Pavolo et al / Oper. Res. Eng. Sci. Theor. Appl. 6(2)2023 140-159 

157 

Annexures 

Annexure 1: Small sample size MRSM dataset 

The MRSM dataset generation for the rubber covered conveyor belting problem is 
explained in detail in Pavolo and Chikobvu (2020a). 

The two-factor CCD experiment MRSM dataset 

Run T (min.) Rt (mm) 
Ave. Hardness 

(0shore A) Ave. Adhesion(N/mm) 

1 16 7.2 60 10.60 
2 30 7.2 63 13.34 
3 16 22.8 53 6.20 
4 30 22.8 61 12.10 
5 23 15 58 11.80 
6 23 15 58 12.10 
7 13 15 44 6.50 
8 33 15 63 13.30 
9 23 4 63 13.30 

10 23 26 56 3.50 
11 23 15 58 12.20 
12 23 15 57 12.30 
13 23 15 58 12.10 

Annexure 2: The fifteen classical model selection criteria used for best model voting 
CRITERION FORMULAR DESCRIPTION 

AIC n ∗ ln (
𝑆𝑆𝑅𝑒𝑠

n
) + 2𝑘 Akaike (1973) 

BIC n ∗ ln (
𝑆𝑆𝑅𝑒𝑠

n
) + k ∗ ln(n) Schwarz's Bayesian Criterion (1978) 

HQ n ∗ ln (
𝑆𝑆𝑅𝑒𝑠

n
) + 2p ∗ ln(ln(n)) Hannan and Quinn (1979) 

KIC n ∗ ln (
𝑆𝑆𝑅𝑒𝑠

n
) + 3(k + 1) Cavanaugh J.E. (1999) 

TIC n ∗ ln (
𝑆𝑆𝑅𝑒𝑠

n
) + 2(k + 1) Takeuchi (1978) 

SBC n ∗ ln (
𝑆𝑆𝑅𝑒𝑠

n
) +

2(k + 2)nσ2

𝑆𝑆𝑅𝑒𝑠
−

2(nσ²)²

𝑆𝑆𝑅𝑒𝑠²
 Sawa (1978) 

AICc n ∗ ln (
𝑆𝑆𝑅𝑒𝑠

n
) + 2𝑘

2k(k + 1)

(n − k − 1)
 Corrected AIC, Sugiura (1978) 

HQc n ∗ 2ln (
𝑆𝑆𝑅𝑒𝑠

n
) + 2𝑛𝑘.

ln(ln(n))

(n − k − 1)
 McQuarrie and Tsai (1998) 

KICc n ∗ ln (
𝑆𝑆𝑅𝑒𝑠

n
) +

(k + 1)(3n − k − 2)

(n − k − 2)
+

𝑘

(n − k)
 Bekara M (2004) 

MKIC 
2(n − K − 2)pσ2

σ²p
− 2p − 2n +  4 Cavanaugh J.E. (2004) 

PRESS ∑ ei
2

n

i=1

= ∑(yi − yî)
2

n

i=1

 Prediction Sum of Squares (Allen, 1971a) 

R²-prediction [1 −
PRESS

𝑆𝑆𝑇𝑜𝑡𝑎𝑙
] ∗ 100 Allen (1971b) 

Adequate Precision 
[max(Ŷ) − min(Ŷ)]

√(Ṽŷ)
> 4 This is a signal-to-noise ratio 

Cp - k 
𝑆𝑆𝑅𝑒𝑔(𝑝)

�̂�2 − 𝑛 + 𝑘 Mallow's Cp (1973) 

APCk 
(𝑛 + 𝑘)𝑆𝑆𝑅𝑒𝑔(𝑘)

n ∗ (n − k)
 Amemiya's Prediction Criterion (1976) 
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Annexure 3: The thirty-one all possible OLS adhesion response models 

The table below shows the adhesion OLS response models respectively. For 
example, the first adhesion model in the table in its expanded form is: 

𝐴𝑑ℎ𝑒𝑠𝑖𝑜𝑛 = 12.26 + 0𝑇𝑖 + 0𝑅𝑖 − 0.0039(𝑇𝑖 ∗ 𝑅𝑖) + 0𝑇𝑖
2 + 0𝑅𝑖

2                           (A1) 
Which simplifies to 
𝐴𝑑ℎ𝑒𝑠𝑖𝑜𝑛 = 12.2600 - 0.0039(𝑇𝑖 ∗ 𝑅𝑖)                                                                  (A2) 
The second response model is 
𝐴𝑑ℎ𝑒𝑠𝑖𝑜𝑛 = 7.95 + 0.3244𝑇𝑖 − 0.3127𝑅𝑖 +  0(𝑇𝑖 ∗ 𝑅𝑖) + 0𝑇𝑖

2 + 0𝑅𝑖
2                   (A3) 

Which simplifies to 
𝐴𝑑ℎ𝑒𝑠𝑖𝑜𝑛 = 7.9500+0.3244𝑇𝑖  - 0.3127𝑅𝑖                                                                (A4) 
The first two adhesion response models are represented in summary format as [𝑇𝑖 ∗
𝑅𝑖] and [𝑇𝑖 , 𝑅𝑖] respectively. 

MODEL β̂0 β̂1 β̂2 β̂12 β̂11 β̂22 
[𝑇𝑖] 3.26000 0.32440     

[𝑅𝑖] 15.41000  -0.31270    

[𝑇𝑖 ∗ 𝑅𝑖] 12.26000   -0.00389   

[𝑇𝑖
2] 6.58000    0.00668  

[𝑅𝑖
2] 13.64000     -0.01114 

[𝑇𝑖 , 𝑅𝑖] 7.95000 0.32440 -0.31270    

[𝑇𝑖, 𝑇𝑖 ∗ 𝑅𝑖] 3.26000 0.51000  -0.01235   

[𝑇𝑖, 𝑇𝑖
2] -2.30000 0.83500   -0.01110  

[𝑇𝑖, 𝑅𝑖
2] 6.18000 0.32440    -0.01114 

[𝑅𝑖, 𝑇𝑖 ∗ 𝑅𝑖] 15.41000  -0.79100 0.02078   

[𝑅𝑖, 𝑇𝑖
2] 11.67000  -0.31270  0.00668  

[𝑅𝑖, 𝑅𝑖
2] 11.08000  0.38000   -0.02309 

[𝑇𝑖 ∗ 𝑅𝑖, 𝑇𝑖
2] 8.96000   -0.01189 0.01048  

[𝑇𝑖 ∗ 𝑅𝑖 , 𝑅𝑖
2] 10.49700   0.02025  -0.02579 

[𝑇𝑖
2, 𝑅𝑖

2] 9.91000    0.00664 -0.01109 
[𝑇𝑖, 𝑅𝑖, 𝑇𝑖 ∗ 𝑅𝑖] 12.94000 0.10700 -0.64600 0.01450   

[𝑇𝑖, 𝑅𝑖, 𝑇𝑖
2] 2.41000 0.83500 -0.31270  -0.01110  

[𝑇𝑖, 𝑅𝑖, 𝑅𝑖
2] 3.61000 0.32440 0.38000   -0.02309 

[𝑇𝑖, 𝑇𝑖 ∗ 𝑅𝑖, 𝑇𝑖
2] -2.28000 1.02000  -0.01235 -0.01110  

[𝑇𝑖, 𝑇𝑖 ∗ 𝑅𝑖, 𝑅𝑖
2] 9.14000 0.09100  0.01559  -0.02242 

[𝑇𝑖, 𝑇𝑖
2, 𝑅𝑖

2] -0.25000 0.91900   -0.01290 -0.01122 

[𝑅𝑖, 𝑇𝑖 ∗ 𝑅𝑖, 𝑇𝑖
2] 15.24000  -0.77100 0.01990 0.00031  

[𝑅𝑖, 𝑇𝑖 ∗ 𝑅𝑖, 𝑅𝑖
2] 11.08000  -0.09800 0.02078  -0.02309 

[𝑅𝑖, 𝑇𝑖
2, 𝑅𝑖

2] 7.52000  0.35800  0.00661 -0.02240 

[𝑇𝑖 ∗ 𝑅𝑖, 𝑇𝑖
2, 𝑅𝑖

2] 10.39000   0.01890 0.00054 -0.02485 

[𝑇𝑖, 𝑅𝑖, 𝑇𝑖 ∗ 𝑅𝑖, 𝑇𝑖
2] 7.40000 0.61800 -0.64600 0.01450 -0.01110  

[𝑇𝑖, 𝑅𝑖, 𝑇𝑖 ∗ 𝑅𝑖 , 𝑅𝑖
2] 8.61000 0.10700 0.04700 0.01450  -0.02309 

[𝑇𝑖, 𝑇𝑖 ∗ 𝑅𝑖, 𝑇𝑖
2, 𝑅𝑖

2] -4.25000 1.02100 0.43000  -0.01510 -0.02476 

[𝑇𝑖, Rt, 𝑇𝑖
2, 𝑅𝑖

2] 1.95000 0.75900  0.01676 -0.01491 -0.02336 

[𝑅𝑖, 𝑇𝑖 ∗ 𝑅𝑖, 𝑇𝑖
2, 𝑅𝑖

2] 11.21000  -0.11300 0.02150 -0.00026 -0.02317 

[𝑇𝑖, 𝑅𝑖, 𝑇𝑖 ∗ 𝑅𝑖, 𝑇𝑖
2, 𝑅𝑖

2] 0.74000 0.80400 0.09700 0.01450 -0.01510 -0.02476 
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Annexure 4: The Multiple Simultaneous Optimisation Ensemble of Pavolo and 
Chikobvu (2021) 

 


