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Research Paper 

Abstract: Different energy sources are typically incorporated into coordinated MGS 
(Micro Grid Systems) using energy management systems. It is challenging to 
integrate acceptable energy management models in MGS mainly due to the 
unpredictable nature, availability estimations and complexities in regulating RES 
(Renewable Energy Sources). Energy policies are encouraging incorporation of RES 
while reducing the usage of fossil-based fuels resulting in the need to optimize RES. 
This study's major goal is to lower running costs of grid-connected MGSs while 
predicting PV (photovoltaic) based electricity and load demands in near future. In 
order to enhance the performance of micro-grids, this work focuses on creating a 
technique for integrating optimized ANN (artificial neutral networks) into an EMS 
(Energy Management System). The schema called EMS-HANN (Energy Management 
System - Hybrid ANN) is proposed in this work and it includes forecasts, planning, 
data gathering, and HMI (human-machine interfaces) components. Day-ahead PV 
power and load demand estimates are combined with a 3-level SWT (stationary 
wavelet transforms) as part of the forecasting module's enhanced hybrid forecasting 
technique and GWO-HANN (grey wolf optimization-based Hybrid Artificial Neural 
Network). The scheduling module employs AEHO (Adaptive Elephant Herding 
Optimisation)-based scheduling to deliver the optimal power flow for grid-connected 

                                                             
Corresponding author: nalsalhi@sharjah.ac.ae (N. R. Alsalhi) 
a.qusef@psut.edu.jo (A. Qusef), alan@alqalam.edu.iq (A. Ghazi), aras.ghazi86@uokirkuk.edu.iq (A. Al-
Dawoodi), e.shudayfat@saejordan.com (E. M. Shudayfat), abdellateef.alqawasmi@aau.ac.ae (A. 
Alqawasmi), salqatawneh@sharjah.ac.ae(S. Al-Qatawneh), s_murad@asu.edu.jo (S. Murad) 

mailto:nalsalhi@sharjah.ac.ae
mailto:a.qusef@psut.edu.jo
mailto:alan@alqalam.edu.iq
mailto:aras.ghazi86@uokirkuk.edu.iq
mailto:e.shudayfat@saejordan.com
mailto:abdellateef.alqawasmi@aau.ac.ae
mailto:s_murad@asu.edu.jo


A. Qusef et al./ Oper. Res. Eng. Sci. Theor. Appl. 6(2)2023 160-179 

161 

MGS. Subsequently, DAQ and HMI modules monitor, analyse, and change forecast and 
schedule input variables. The proposed model for applications of MGS is implemented 
along with current algorithms in MATLAB/Simulink platform where outcomes 
demonstrate better performances of the suggested model as compared to 
comparable efforts. 

Keywords: MicroGrid Systems, Energy Management System (EMS-ANN), 3- Level 
Stationary Wavelet Transform (SWT), Grey Wolf Optimization-based Hybrid Artificial 
Neural Network (GWO-ANN), Adaptive Elephant Herding Optimization (AEHO). 

1. Introduction 

The prevailing comprehension of power systems is undergoing a transformation 
due to economic and environmental motivations, alongside technical progress. The 
majority of the current electrical grid infrastructure in the United States was built 
during the 1930s (Varshney, 2022). Over the course of the past four decades, the old 
and overburdened electricity infrastructure has seen a total of five notable instances 
of power outages. Electric power plays a pivotal role in driving the economic growth 
of nations on a worldwide scale. Meeting the increasing energy demand for electricity 
poses a significant challenge due to the global population growth. Producing electric 
power is an arduous task that exerts significant pressure on the power market. The 
power-generating company has used renewable energy sources (RES) as a means to 
address the challenges encountered in the power industry and improve energy 
consumption. Microgrid systems (MGS) have emerged as a contemporary and 
auspicious methodology for tackling these challenges by restructuring the existing 
energy infrastructure and ensuring the reliability of electricity provision. Microgrid 
systems (MGS) refer to low-voltage distribution networks that establish a connection 
with distribution substations through points of common coupling (PCC). These MGS 
are often located downstream of the substations. Distributed generators (DGs), 
distributed energy storage (DES), and regulated loads are components comprising the 
microgrid system (MGS). When it comes to the control and operation of a grid, the 
unique characteristics and dynamics of a Microgrid System (MGS) present a particular 
difficulty. The optimal energy management strategy might vary significantly from a 
conventional power system, contingent upon the characteristics and prevalence of 
distributed energy resources (DERs) and distributed energy system (DES) nodes 
inside a given microgrid system (MGS) (Mohammad, Ahmed, & Kim, 2021). During 
instances of blackout or brownout, a typical Microgrid System (MGS) operates in two 
distinct modes: interconnected modes, which are connected to major grids by 
distribution substation transformers, and independent mode. 

The MGS, or Microgrid System, comprises conventional power plants, multiple 
renewable energy sources (RES), energy storage facilities, and consumer demand. 
According to Albarakati et al. (2022) these more cost-effective systems have the 
potential to be situated in closer proximity to load centres compared to traditional 
centralised power plants because to their sustainability and compactness (Ghazi et al., 
2021). The predominant share of this emerging trend is constituted by wind and solar 
energy systems. The exclusive focus on the development of solar and wind power 
generating systems has been well regarded. The management and regulation of 
reactive power play a critical and essential role in power systems. The challenges 
associated with implementing a renewable-based power grid system mostly emerge 
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from the electrical demand and meteorological factors upon which the energy source 
relies (Pires, Pires, & Cordeiro, 2023). Power grid systems employ demand response 
strategies, commonly referred to as demand response energy resources (RES), in 
order to mitigate energy usage. The distribution component of this system introduces 
additional challenges related to design and selection of power inverters. The problem 
has been resolved through the application of a model that determines the suitable 
allocation of the renewable energy system. Certain devices are well-suited to operate 
in conjunction with renewable energy-generating systems when the appropriate load 
utility is employed. This improves performances of cellular, battery, converter circuit, 
and capacitor (Aqilah et al., 2023). 

The utilisation of non-traditional energy sources such as solar and wind energy is 
expected to be the most feasible and probable approach for fulfilling the global energy 
demands in the future (Albaker, Alturki, Abbassi, & Alqunun, 2022). Reactive power 
management utilising machine learning techniques is employed in the radial 
distribution system to mitigate power losses and predict wind speed. The application 
of hybrid renewable energy systems (RES) in conjunction with machine learning 
techniques is employed to identify optimal solutions for the management of power 
systems. The integration of renewable energy sources (RES) with the power grid 
necessitates the implementation of many control systems in order to optimise power 
flows across buses. The management of the MGS's power is a critical and intricate 
factor to take into account when utilising RES (Hado et al., 2022). While it may appear 
more straightforward to categorise the strategies as centralised and distributed power 
management, distinguishing between the two can provide a challenge. The 
decentralised control approach, also known as the structure of several local 
controllers operating under a single global supervisory controller, stands in contrast 
to the master/slave strategy that necessitates a high data bandwidth link. The 
decision-making process is commonly employed as a means to distinguish between 
centralised and dispersed control (Al-Dawoodi et al., 2019; Zebra, van der Windt, 
Nhumaio, & Faaij, 2021). In essence, a centralised technique refers to a decision-
making approach where power distribution determinations are exclusively 
determined by a single component, whether it be tangible controllers or virtual agents. 
This stands in contrast to the decentralised nature of decision-making across the 
Multi-Grid System (MGS). The majority of contemporary MGS (multi-agent system) 
initiatives exhibit hierarchical architectures including central controllers, alongside a 
number of decentralised efforts employing MAS (multi-agent system) approaches. The 
negotiation process among agents plays a crucial role in the operational mechanism of 
Multi-Agent Systems (MAS) (Gonal & Sheshadri, 2021), which is fundamentally 
different from the conventional control mode that has been investigated. Negotiation 
can be utilised to achieve power equilibrium and promote economic optimisation. 

Nevertheless, the incorporation of diverse energy sources to address the increasing 
load demand presents novel challenges in power management and control. 
Consequently, the primary issue at hand pertains to the provision of cost-effective 
electricity to consumers, taking into account optimisation strategies (Ramos & Costa-
Castelló, 2022). In order to ensure continuous and cost-effective fulfilment of load 
demand, it is imperative to effectively manage the scheduling of available power 
supplies. Emergency Medical Services (EMS) can fulfil significant functions inside grid-
connected Microgrid Systems (MGS) by effectively managing energy-producing 
resources and storage systems, hence leading to financial benefits. The 
aforementioned system possesses the capability to regulate power distribution and 



A. Qusef et al./ Oper. Res. Eng. Sci. Theor. Appl. 6(2)2023 160-179 

163 

transmit signals to the key control units of the MGS, hence facilitating the attainment 
of predetermined objectives. The aim of this study is to integrate artificial neural 
networks (ANN) into energy management systems (EMS) in order to improve the 
performance of microgrids (MGS). 

The major goal of the research is to reduce the overall operating costs of grid-
connected MGS while also projecting PV electricity and load demand in the near future. 
The remainder of the research is organised as follows; part 2 examines the 
sophisticated techniques used in MGS's power management procedure. Section 3 
outlines the methodology's recommended approach. The findings and discussion are 
presented in section 4. Section 5 covers the conclusion and further research. 

2. Literature Review 

In this section reviews the some of the recent techniques for the power 
management using artificial intelligence in hybrid energy for micro grid applications. 

Chandrasekaran, Selvaraj, Amaladoss, and Veerapan (2021) enhanced the smart 
grid model by incorporating RES and implementing an improved optimal variation 
technique. The primary contribution of this research article is in the creation of a novel 
smart grid framework that utilises renewable energy sources and incorporates 
artificial neural networks (ANNs) to effectively regulate voltage levels and ensure 
optimal reactive power distribution within grid networks. The abovementioned 
objectives are accomplished through the utilisation of DSTATCOM, which integrates 
renewable energy sources (such as solar and wind energy) with artificial neural 
networks (ANN) to enhance power control efficiency. The fulfilment of energy 
requirements can be achieved through the reception of necessary energy inputs from 
solar and wind-based Microgeneration Systems (MGSs). Feed Forward Neural 
Networks (FFNN) can also be employed for the control of Multi-Generator Systems 
(MGSs), with the aim of optimising power generation by considering voltage profiles 
and minimising power losses. The utilisation of Distribution Static Compensator 
(DSTATCOM) in Microgrid Systems (MGS) aids in the regulation of reactive power 
levels within permissible thresholds, hence improving voltage profiles and reducing 
power losses. 

The utilisation of ACO (Ant Colony Optimisation) algorithms has been observed in 
the context of AEDG (Advanced Energy Design Guide) MGS (Modelica-based Generic 
Supervisory) frameworks, specifically for the purpose of implementing intelligent 
supervisory controls. This approach was initially introduced by Colson et al., as cited 
in the work of Tepe and Irmak (2022), where it was referred to as dispatch controls. 
The use of Ant Colony Optimisation (ACO) was employed for the purpose of power 
management in Microgrids (MGS), taking into account many factors such as 
environmental limitations and multifaceted aims, the availability of fuel/resources, 
and economic considerations. The study introduced the use of the constraint 
satisfaction problem (CSP) technique as a means to address the challenges posed by 
intricate multi-objectives and multi-constraints in energy management for integrated 
Advanced Energy Design Guide (AEDG) systems. 

Although developing MGS power management control is a difficult task, it is 
essential for the widespread adoption of AEDG systems. A MGS-DERs was presented 
by Juma, Mwinyiwiwa, Msigwa, and Mushi (2021) for a rural isolated system made 
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from a solar PV system, both a WT-PMSG (wind turbine connected to synchronous 
permanent magnet generator) and a BESS (battery energy storage system) were 
utilised. MPPT (Maximum power point tracking) PI (Proportional integral) controllers 
were used in the study to regulate DERs for obtaining MPPT (maximum power 
tracking) and error corrections. MPPTs use P&O (perturb and observe) methods and 
track maximum power points in DERs. PI increments are based on Ziegler-Nichols 
technique. The study’s simulations on MATLAB/Simulink for continuous and 
steploads showed that controllers allowed BESS to charge despite load fluctuations 
and other external factors including wind speeds and irradiances. The DC MGS output 
voltage closely matched the reference which are applicable for far away grids. 

 The authors Arkovi et al., as mentioned in the work of Kontogiannis, 
Bargiotas, and Daskalopulu (2021), put forward the concept of fuzzy expert systems 
for the purpose of controlling demands, managing renewable energy sources (RES) 
and electrical energy storage in microgrid systems (MGS) and smart homes. These 
systems aim to automate the management of storages, regulated loads, and energy, 
hence enhancing overall energy management efficiency. The fuzzy expert system is 
utilised to optimise the storage and utilisation of energy, with the aim of maximising 
the financial gains derived from renewable energy sources (RES). The fuzzy expert 
system utilises input factors such as insolation, electrical energy costs, temperatures, 
wind speeds, and unpredictable power demands to facilitate energy management. Grid 
measurements can directly give these inputs, or alternatively, data forecasting 
algorithms can be employed to obtain them. This work proposes a series of expert 
system rules, provides output defuzzification, and applies fuzzification to input 
variables as a means to regulate energy production and consumption. 

In order to ascertain the amount of energy generated, the loads under control, and 
individual consumption, three distinct outputs have been designated. In order to 
improve the performance of MGS (Multi-Generation Systems), Aguila-Leon, Vargas-
Salgado, Chiñas-Palacios, and Díaz-Bello (2022) developed a methodology that 
involves the integration of optimised artificial networks into a self-adaptable energy 
management system. Artificial neural networks (ANNs) were sequentially connected 
in the model described. The PSO (Particle Swarm Optimisation) approach is utilised to 
optimise each Artificial Neural Network (ANN) in the proposed model. The objective 
of this model is to estimate and provide data to the energy management system. The 
model in the MATLAB/Simulink environment is supplied with experimental data. In 
order to validate the proposed model, a correlation analysis is conducted to examine 
the relationships between system variables across different artificial neural networks 
(ANNs). 

The analysis of the system's response is conducted by evaluating the root mean 
squared error and performing linear regression. This analysis is carried out following 
the simulation of tests that are designed based on experimental data. To achieve 
optimal performance and cost-effectiveness in electrical frameworks, Roy et al. quoted 
in Sami et al. (2021) proposed a hybrid strategy that incorporates the utilisation of 
renewable energy sources (RES). The hybrid approach is generated by combining the 
bacterial foraging optimisation algorithm (BFOA) with artificial neural network (ANN) 
techniques. In this particular context, the term "MGS" encompasses photovoltaic 
systems, wind turbines (WTs), and energy storage devices. The recommended 
strategy for implementing controls involves the regulation of power flows between 
grids and energy sources. In order to comprehensively analyse the effectiveness of 
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demand response (DR) programmes, it is imperative to take into account many factors 
such as customer reactions, offer priorities, demand sizes, durations, and the resulting 
reduction in cost of energy (COEs). The proposed method was implemented and 
evaluated on the MATLAB/Simulink platform, and its performance was compared to 
that of established methods, namely the genetic algorithm (GA) and artificial bee 
colony (ABC) algorithms. According to the research findings, the suggested maximum 
outputs for photovoltaic systems (PV), wind turbines (WT), microturbines (MT), and 
batteries were 7.5 kW, 9 kW, 15.5 kW, and 4.5 kW, correspondingly. 

In their study, Jirdehi, Shaterabadi, Tabar, and Jordehi (2022) presented a new 
modelling approach, based on the work of Moghaddas-Tafreshi et al., that aims to 
optimise the management of electrical and thermal energy in multiple carriers MGS. 
The proposed strategy also takes into account system limits in order to minimise 
operation costs.The experimental setup encompassed a diverse array of power 
generation devices, including fuel cells, waste-to-energy facilities, wind turbines, and 
boilers, among others.The MGS comprised several components, namely a boiler, an 
anaerobic reactor-reformer system, a microturbine, a fuel cell, a garbage-burning 
power plant, a wind turbine creation system, an inverter, a rectifier, and other energy 
storage units. The model utilises day-ahead forecasting (24 hours) to predict the 
electrical and thermal demands of an MGS network. The estimation of wind turbine 
power generation is similarly predicated on a one-day forecast. A Monte Carlo 
simulation is employed for the purpose of assessing the thermal loads, electrical 
demands, and wind power generation due to the inherent instability of day-ahead 
forecasts. The allocation of non-essential loads is determined by the real-time pricing 
demand responses. The utilisation of the particle swarm optimisation technique has 
been observed to result in a reduction of operational expenses within micro-grid 
systems. 

According to Kumar, Rizwan, and Nangia (2022), a hybrid MGS is created by 
combining accessible RES with interactions with modern power networks.  

The proposed approach entails the utilisation of a hybrid system that combines a 
wind energy conversion system with solar photovoltaic technology, hence resulting in 
an integrated microgrid solution. The proposed approach integrates renewable 
energy sources (RES) with a meta-heuristic optimisation method to achieve optimal 
energy distribution in a grid-connected hybrid microgrid system (MGS). The primary 
purpose of the recommended method is to select the optimal size for a renewable 
energy-based microgrid system (MGS) based on the load profile and time of usage. A 
comparison analysis was conducted using case study data and additional sources to 
authenticate this methodology. The study observed notable cost reductions of 30.88% 
and 49.99% of the rolling cost when comparing mixed integer linear programming-in 
EMS and fuzzy logic based EMS, respectively. 

Boujoudar, Azeroual, Elmoussaoui, and Lamhamdi (2021) developed an intelligent 
control technique for a microgrid system (MGS) consisting of grid-connected solar 
panels, lithium-ion battery energy storage units, and photovoltaic panels. The energy 
management system employs an intelligent controller for the bidirectional DC/DC 
converter (BDDC) to facilitate the process of charging and discharging batteries. The 
major innovation of this approach is in the utilisation of Artificial Neural Networks 
(ANN) for bidirectional converter control and the computation of battery State of 
Charge (SOC). The performance and robustness of the proposed control technique 



An Energy Management System Using Optimized Hybrid Artificial Neural Network for Hybrid 
Energy System In Microgrid Applications 

166 

were elucidated through MATLAB/Simulink simulations. 

 In their seminal work, Kim, Oh, and Choi (2022) proposed an innovative 
methodology for achieving cost-effective energy management. Their strategy 
incorporates the analysis of power outputs and consumptions, leveraging auxiliary 
Internet of Things (IoT) devices. The study successfully verified the accuracy and 
effectiveness of analytical and energy management models using real-world datasets 
obtained from operational CMGs. 

The implementation of a comprehensive management strategy (CMG) can result in 
a decrease of 2.16% in daily electricity prices and a reduction of 3% in peak power 
use, as compared to scenarios without CMG. In their study, Sami et al. (2021) employed 
a hybrid strategy to optimise the programming of an electrical framework. This 
technique aimed to achieve a balance between reducing manufacturing costs and 
enhancing the utilisation of renewable energy sources (RES). The researchers used the 
Bacterial Foraging Optimisation Algorithm (BFOA) and the Hybrid Artificial Neural 
Network (HANN) to optimise the storage of Microgrid Systems (MGS) in relation to 
wind and photovoltaic (PV) technologies. The suggested control system involved the 
monitoring of power flows between grids and renewable energy sources (RES). It took 
into account several factors such as demand responses (DR), customer reactions, offer 
priority, DR sizes, durations, and minimal cost of energies (COEs). The researchers 
applied their methodology on the MATLAB/Simulink platform and compared the 
results with alternative approaches such as the genetic algorithm (GA) and artificial 
bee colony (ABC) algorithms. 

3. Proposed Methodology 

 
4. Figure 1. Proposed Energy Management system 

 This work suggests using EMS-HANN in grid-connected MGS in order to 
enhance performances in terms of reduced running costs while also forecasting PV 
powers and load demands in the near future. EMS-HANN includes four main 
components namely forecasts, schedules, DAQ, and HMI. The forecasting module uses 
updated hybrid forecasts encompassing 3-level SWTs and GWO-ANN (grey wolf 
optimization-based ANN) for PV power productions and predicting load demands. The 
scheduling module uses AEHO to ensure that grid-connected MGS receives best power 
flows. The DAQ and HMI module are used to monitor, assess, and make changes to 
inputs of forecast and schedule modules. The general procedures of the recommended 
technique are shown in Figure 1. 
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3.3.1. Proposed EMS 

 This paper proposes intelligent EMS for grid-connected MGS based on better 
hybrid predictions and optimum schedules (see Fig. 2). The proposed EMS meets load 
demands by acquiring information regarding load demands, weather characteristics, 
and other factors. PV powers and processing historical data are inputs for predicting 
best suitable load demands, PV powers; and energy resources schedules. Additionally, 
DAQ and HMI modules enable users to assess and keep track of input elements 
including historical weather data, PV powers, and load demands. In the sections that 
follow, this work’s proposed modules are discussed in details. 

 
Figure 2. Proposed EMS-HANN system 

3.3.2. Hybrid forecasts using GWO-LSSVM based on Wavelet transforms 

 As seen in Fig. 2, a hybrid forecasting technique based on three levels of SWT, 
GWO, and HANN is proposed using 3-level SWT on historical data from meteorology. PV 
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powers and load demands were split into low and high frequencies and results were fed 
as inputs to GWO-HANN for forecasts of PV powers and load demands. GWO-HANN 
outputs were then reconstructed using 3-level SWTs where day's expected PV powers 
and load demands were estimated. Forecasting accuracy of this work’s suggested 
method was enhanced by appropriate weather-linked parameters which influence PV 
power outputs and load demands. The relationships between these two parameters and 
weather were investigated in this work using Pearson correlation coefficients. The 
proposed approach demonstrated that climate which frequently influences PV power 
generations and loads,is significantly affected by temperature and humidity. Hence, 
correlations of temperature and humidity were also considered in this work. 

3.3.3. SWT 

 SWT was used to divide historical meteorological data (PV powers and load 
demands). SWT's capacity to isolate sub-components via filtering eventually helped it 
surpass original climates, load demands, and PV power data, boosting forecasting 
accuracy for both PV powers and load demands. SWTs addressed the shift invariance 
difficulties of DWTs (discrete wavelet transforms) by incorporating up-sampling and 
eliminating down-sampling in the filter coefficients. SWT, like DWT, properly splits 
incoming signals into high and low-frequency components. SWT, on the other hand, 
provides output signals that are not decimated. Sparks and changes in input signals 
were shown using details, while broad patterns were shown using approximations. 
Using high- and low-pass filters, the input data was separated into approximations and 
details for the multilevel decomposition. 

The applications of SWTs in load demand forecasts proved their utility in this work. 
Historical data (PV power, load demand, and meteorological conditions) were 
evaluated using 3-level SWTs. The selections of MWF (mother wavelet function) was 
as it impacted 3-level SWT functions significantly by the inclusions of Coiflet (coif), 
Daubechies (db), and Symlet (sym). Wavelet forecasts were based on Daubechies type 
MWF of order 4 (db4) as it was demonstrated by Rana et al. demonstrated that db4 
was the most appropriate and effective MWF for predictions.  

3.3.4. GWO 

 GWO is a swarm-based heuristic technique inspired by social structures and 
instincts of grey wolf hunts for prey. Social orders of grey wolves are divided into four 
groups as seen in Fig. 3. Leaders make up the first level ("alpha") of the social 
hierarchy. They include both male and female greywolves who make decisions about 
things like hunting, where to sleep, when to wake up, etc (Seyyedabbasi & Kiani, 2021). 
The second level is made up of "beta" wolves who aid the alphas in making choices and 
carrying out plans on the lower categories. The third-level "delta" wolves are 
dedicated to carrying out the aforementioned commands and supervising the omega 
group. At the bottom of the hierarchy are the "omega" wolves, who are in charge of 
obeying the instructions of the aforementioned groups and carrying out the job of 
hunting. The remaining responses are regarded as an omega in the search space in 
GWO, whereas the top three best solutions are assumed to be alpha, beta, and delta. 
Grey wolves surround their preys during hunting, which may be stated 
mathematically using Equations (1) and (2), respectively: 

𝐹 = |𝐺. 𝑋𝑝𝑟𝑒𝑦(𝑡) − 𝑋(𝑡)|               (1) 
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𝑋(𝑡 + 1) = 𝑋𝑝𝑟𝑒𝑦(𝑡) − 𝐷. 𝐹                        (2) 

 where 𝑋𝑝𝑟𝑒𝑦 implies positions of preys, X stands for grey wolf’s positions, t 

represents current iterations, and D, G are coefficients expressed in Eqs. (3) and (4): 

𝐷 = 2𝑎. 𝑟1 − 𝑎               (3) 

𝐷 = 2. 𝑟2                             (4) 

 

Figure 3. Social hierarchy of grey wolves. 

 r1 and r2 imply random integers in the range [0,1], and components a reduce 
linearly from 2 to 0 in iterations. The best of first three parameters are used in 
optimisations. The placements of other wolf groups (such as omega) are then adjusted 
based on these and represented mathematically as: 

𝐹𝛼 = |𝐺1𝑋𝛼(𝑡) − 𝑋(𝑡)|                              (5) 

𝐹𝛽 = |𝐺2𝑋𝛽(𝑡) − 𝑋(𝑡)|                              (6) 

𝐹𝛿 = |𝐺3𝑋𝛿(𝑡) − 𝑋(𝑡)|                               (7) 

 Positions of preys are computed based on alpha, beta, and delta group 
positions using the following equations: 

𝑋1 = |𝑋𝛼 − 𝐷1. 𝐹𝛼|                     (8) 

𝑋2 = |𝑋𝛽 − 𝐷2. 𝐹𝛽|                       (9) 

𝑋3 = |𝑋𝛿 − 𝐷3. 𝐹𝛿|                     (10) 

𝑋(𝑡 + 1) =
𝑋1+𝑋2+𝑋3

3
                   (11) 

 where 𝑋𝛼 , 𝑋𝛽 , and 𝑋𝛿 represent alpha, beta, and delta groups' positions, 

accordingly. D determines explorations/ exploitations of grey wolf searches. When 
compared to other competitive algorithms, GWO performs better due to effective 
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utilisations of D. GWO devotes half of iterations to explorations and the balance for 
exploitations, avoiding local minima, greater explorations/exploitationsin parallel.  

3.3.4.1.GWO based Hybrid ANN  

 Electrical technology is using artificial intelligence more and more as a result 
of a better knowledge of the interactions between various formulation and process 
factors. Fuzzy logic and neural networks (Chimmiri & Jujjavarapu, 2021) are two 
quickly developing technologies that might be used in the development and 
processing of medicinal goods. For successful prediction and formulation condition 
optimisation, evolutionary algorithms are used with ANN. 

First-order logic and neural networks may naturally be connected by fuzzy logic, and 
fuzzy-neural systems appear to have flourished probably more than other forms of 
symbolic connectionism. Fuzzy input layers (fuzzification), hidden layers with fuzzy rules, 
and final fuzzy output layers (defuzzifications) are all components of three-layer feed-
forward networks known as fuzzy neural networks. Layer-to-layer connections that are 
fuzzy in nature contain fuzzy sets, although five-layer networks containing sets in the 
second and fourth levels are exceptional. If there is enough input, a rule in the hidden layer 
will be activated. The input membership functions of the fuzzy rules are represented in the 
input layer. The relative weights across the layers determine membership in each fuzzy 
set. which may be changed using specific training procedures, much as in a typical neural 
network. Typically continuous, transfer functions transmit real values to the output layer 
of the network where they are converted to degrees of membership in fuzzy sets based on 
the firing of fuzzy rules in the hidden layer. 

 FFNNs using BP (Back Propagation) least mean-square learning methods are 
the most proliferated. Figure 5 depicts its topology. Network edges connect neural 
processing units, and neuronal inputs are assigned weights based on locations within 
cell's hierarchy. Net functions addinputs of neuronsfor net values which are weighted 
linear combinations of inputs. A hierarchical criteria in multicriteria analyses offer 
overall evaluations of patterns. This hierarchy encoded by hierarchical neural network 
with neurons representing criteria might be employed. Input neurons in networks are 
emphasised differently. Hidden neurons and output satisfy complex criteria and used 
as net functions of neurons or evaluation functions. When the criteria are considered 
independently, they can be merged linearly. 

But in actuality, there is some correlation between the criteria. The link between the 
criteria cannot be captured by the linear evaluation function. The SBP (Standard BP) 
algorithm is proposed to address this flaw. The FBP (Fuzzy BP) method is proposed in this 
study as a fuzzy extension. It does not assume that the criteria are independent because it 
computes the net value with an LR-type fuzzy number. Another advantage of the FBP 
algorithm is that it never reaches a local minimum and proceeds continuously to the goal 
value without oscillations. Thus, the conditions for FBP convergence in network singular 
outputs with single- and multiple-training patterns are both necessary and sufficient. 

3.3.4.2. FBP algorithm  

 Many neuro-fuzzy models have recently been presented for computing net 
values by aggregating the neuron inputs. Sugeno's fuzzy integrals are based on 
psychological backgrounds and can be represented mathematically as: 

 Step1: Random generations of initial weights w for hidden layer inputs, 
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where 𝑤𝑗𝑖 = (𝑤𝑚𝑗𝑖 , 𝑤𝛼𝑗𝑖 , 𝑤𝛽𝑗𝑖)are LR type fuzzy numbers and generate weight sets w’ 

for hidden output layers 

  Where 𝑤𝑘𝑗
′ = (𝑤𝑚𝑘𝑗

′ , 𝑤𝛼𝑘𝑗
′ , 𝑤𝛽𝑘𝑗

′ ) 

𝑤𝑗𝑖 = (𝑤𝑚𝑗𝑖 , 𝑤𝛼𝑗𝑖 , 𝑤𝛽𝑗𝑖) 

𝑤𝑘𝑗
′ = (𝑤𝑚𝑘𝑗

′ , 𝑤𝛼𝑘𝑗
′ , 𝑤𝛽𝑘𝑗

′ ) 

 Step2: Let (𝐼𝑝, 𝐷𝑝) 𝑝 = 1, 20 … 𝑁  input/output patterns needed for training by 

fuzzy BP where 𝐼𝑝 = (𝐼𝑝0, 𝐼𝑝1, 𝐼𝑝1)and 𝐼𝑝𝑖stand for LR-type fuzzy numbers. 

 Step3: Assign values for α and η; Alpha=0.1 Neta =0.9 
 Step4: Get next pattern set (𝐼𝑝, 𝐷𝑝) Assign (𝑂𝑝𝑖 =  𝐼𝑝𝑖 , i=1,2,3..1  

 Step5: Compute the input to hidden neurons  
𝑂𝑝𝑗

′ = 𝑓(𝑁𝐸𝑇𝑝𝑗), 𝑗 = 1,2 … . , 𝑚; 𝑂𝑝0
′ = 1 

   Where 𝑁𝐸𝑇𝑝𝑗 = 𝐶𝐸 (∑ 𝑊𝑗𝑖𝑂𝑝𝑖) 

 Step6: compute the hidden to output neurons  
𝑂’’𝑝𝑘 = 𝑓 (𝑁𝐸𝑇’𝑝𝑘) , 𝑘 = 1,2, . . 𝑛; 

  Where 𝑁𝐸𝑇’𝑝𝑘 = 𝐶𝐸 (∑ 𝑊𝑗𝑖𝑂’𝑝𝑗 ) 

 Step7: compute change of weights ∆ w’(t) for the hidden output layer as follows  
  Compute  
   ∆𝐸𝑝(𝑡) = (𝜕𝐸𝑝/𝜕𝑤’𝑚𝑘𝑗  , 𝜕𝐸𝑝/𝜕𝑤𝛼𝑘𝑗, 𝜕𝐸𝑝/𝜕𝑤’𝛽𝑘𝑗)  

  Compute  
   ∆𝑤’(𝑡)  =  −𝜂∆𝐸𝑝(𝑡) + 𝛼∆𝑤’(𝑡 − 1)  

  The update weight i of hidden to output neuron is  
  𝑊’(𝑡)  = 𝑊’(𝑡 − 1) + ∆𝑊’(𝑡) 

 Step 8: Compute change of the weights ∆ w’(t) for the input hidden layer as 
follows 

  Let 
𝛿𝑝𝑚𝑘 = −(𝐷𝑝𝑘 − 𝑂’’𝑝𝑘)𝑂’’𝑝𝑘(1 − 𝑂’’𝑝𝑘).1 

𝛿𝑝𝑚𝑘 = −(𝐷𝑝𝑘 − 𝑂’’𝑝𝑘 )𝑂’’𝑝𝑘(1 − 𝑂’’𝑝𝑘). (−
1

3
) 

𝛿𝑝𝑚𝑘 = −(𝐷𝑝𝑘 − 𝑂’’𝑝𝑘 )𝑂’’𝑝𝑘(1 − 𝑂’’𝑝𝑘). (
1

3
) 

  Compute 
∆𝐸𝑝(𝑡) = (𝜕𝐸𝑝/𝜕𝑤’𝑚𝑗𝑖  , 𝜕𝐸𝑝/𝜕𝑤𝛼𝑗𝑖 , 𝜕𝐸𝑝/𝜕𝑤’𝛽𝑗𝑖) 

  Compute 
∆𝑤’(𝑡)  =  −𝜂∆𝐸𝑝(𝑡) + 𝛼∆𝑤’(𝑡 − 1) 

  Step 9: update weight for the input-hidden-output layer as 
𝑊(𝑡)  = 𝑊(𝑡 − 1)  + ∆𝑊(𝑡) 

𝑊’(𝑡)  = 𝑊’(𝑡 − 1)  + ∆𝑊’(𝑡) 
  𝑺𝒕𝒆𝒑 𝟏𝟎: 𝑝 = 𝑝 + 1; 

if (p<=N) go to step 5 
  Step 11: COUNT_of_ITRNS=COUNT_OF_ITRNS+1; 
   if COUNT_of_ITRNS<ITRNS 
   { 
   Reset pointer of first pattern in the training set; 
   P=1; 
   Go to step 5; 
   } 
  Step12: output w’ and w’’ the final weight sets. 
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3.3.5. Scheduling using AEHO. 

 Scheduling is important to EMS since it assist in regulating electricity flows 
between utility grids and MGS. MGS functions economically by taking into account the 
several options. In this paper, we suggested an objective function to lower the 
operational costs of MGS, which can be described as follows: 

𝑂𝑓 = 𝑚𝑖𝑛 ∑ 𝑃𝑃𝑉 (𝑡)𝐶𝑝𝑣 + 𝑃𝐵𝐶(𝑡)𝐶𝐵𝐸𝑆𝑆 + 𝑃𝐵𝐷(𝑡) 𝐶𝐵𝐸𝑆𝑆 + 𝑃𝐺−1(𝑡)𝐶𝐺−1 → 𝑡 ∈ [1: 𝑚]       

(12) 

 where 𝐶𝐺−1 stands for electricity prices of drawn powers from main grids; 𝐶𝑝𝑣 

represent maintenance costs for PV 𝑃𝐵𝐶  and   𝐶𝐵𝐸𝑆𝑆  the maintanence costs for 
BESS, 𝑃𝐵𝐷  ; and m is total time conssumed. The primary decision variables in the grid-
connected MGS are PV power P_PV, BESS charge and discharge power, imported 
electricity from grid P_(G-1), BESS capacity B_C, and binary decision variable (). 
Numerous technical restrictions, such as power balancing and BESS constraints, 
should be considered in order to reduce the operating cost of grid-connected MGS. The 
charging power, discharging power, and capacity restrictions for BESS are among 
them. These technological restrictions can be formally described using the following 
equations: 

∑ 𝑃𝐿𝑜𝑎𝑑(𝑡) − 𝑃𝑃𝑉(𝑡) + 𝑃𝐵𝐶(𝑡) − 𝑃𝐵𝐷(𝑡) − 𝑃𝐺−1(𝑡) = 0 → 𝑡 ∈ [1: 𝑚]                        (13) 

𝐵𝐶(𝑡) = 𝐵𝐶(𝑡 − 1) +
24𝜂𝐵𝐶

𝑚
𝑃𝐵𝐶(𝑡) +

24𝜂𝐵𝐷

𝑚
𝑃𝐵𝐷(𝑡) → 𝑡 ∈ [1: 𝑚]                        (14) 

𝑃𝐵𝐷(𝑡) − 𝑃𝐵𝐷
𝑚𝑎𝑥𝛼 ≤ 0 → 𝑡 ∈ [1: 𝑚]                       (15) 

𝑃𝐵𝐶(𝑡) + 𝑃𝐵𝐶
𝑚𝑎𝑥𝛼 ≤ 𝑃𝐵𝐶

𝑚𝑎𝑥 → 𝑡 ∈ [1: 𝑚]                       (16) 

 There are several optimization variables bounds that need to be considered 
for solving the optimization problem, and these bounds are listed below: 

𝑃𝑃𝑉
𝑚𝑖𝑛 ≤ 𝑃𝑃𝑉 (𝑡) ≤ PPV

max → t ∈ [1: m]                           (17) 

𝐵𝑐(0) = 𝐵𝑖𝑛𝑖𝑡𝑖𝑎𝑙                        (18) 

𝐵𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 𝐵𝑒𝑛𝑑     (19) 

 where a are binary decision variables for BESS; hBC and hBD are efficiencies 
of BESS while charging and discharging, and BCap is the capacity of BESS. 

 . In this research, an AEHO was used to conduct optimum scheduling in grid-
connected MGS. 

 AEHO 

 As shown below, the proposed EHO (Elephant herding optimisation) 
technique (Wang, Deb, & Coelho, 2015) is a novel metaheuristic nature-inspired 
optimisation method that discovers the ideal solution to advance multicast routing:  

 1) CLAN OPERATOR  

 The elephants are divided into clans, each of which is led by a matriarch. As a 
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result, each elephant's future position in clan ci is determined by matriarch ci. It is 
possible to update the elephant j in clan ci, as shown in Equation 1: 

𝑥𝑛𝑒𝑤,𝑐𝑖,𝑗 = 𝑥𝑐𝑖,𝑗 + 𝛼 × (𝑥𝑏𝑒𝑠𝑡,𝑐𝑖 − 𝑥𝑐𝑖,𝑗) × 𝑟                   (20) 

 where𝑥𝑛𝑒𝑤,𝑐𝑖,𝑗 stands for newly updated elephant j’s position  in clan ci and 

𝑥𝑐𝑖,𝑗 its old position. α ∈ [0, 1] are scales that determine matriarch ci’s influences 𝑥𝑐𝑖,𝑗. 

𝑥𝑏𝑒𝑠𝑡,𝑐𝑖 represents matriarch ci, the fittest elephant individual in clan ci and r ∈ [0, 1]. 

Fittest elephants in clan cans are updated as: 

𝑥𝑛𝑒𝑤,𝑐𝑖,𝑗 = 𝛽 × (𝑥𝑐𝑒𝑛𝑡𝑒𝑟,𝑐𝑖)                      (21) 

 where 1 ≤ d ≤ D indicates dth dimensions, and D stands for total dimensions. 
nci represents clan’s elephant counts ci. 𝑥𝑐𝑖,𝑗 , d implies dth individual elephant 𝑥𝑐𝑖,𝑗 . 

The clan ci’s center, 𝑥𝑐𝑒𝑛𝑡𝑒𝑟,𝑐𝑖 is computed using Equation 21 and using D. 

4. Results and Discussion 

 The proposed EMS-HANN system's numerical findings (forecasting and 
scheduling) are evaluate for effectiveness and efficiency where forecasting and 
scheduling are carried out for various conditions with randomly selected days in four 
seasons. 

 

Figure 4. Comparison results of PV power (kW) between proposed and existing methods 

 Figure 4 depicts the results of PV powers and load demands future predictions 
for selected days. On the y-axis of each graphic is the power in kilowatts, and x-axis 
represents time in hours. PV power forecast outputs using the recommended 
technique and those of the ACO and CNN. However, the result cognate with the findings 
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of Tayab et al. (2021) on energy management system for microgrids, employing the 
weighted salp swarm algorithm and a hybrid forecasting technique to address the 
issue of variable output caused by the intermittent nature of renewable energy 
resources. This variability leads to an imbalance between power generation and 
demand inside microgrids. The Energy Storage System (ESS) is employed to achieve 
equilibrium between electricity generation and consumption. In the context of 
microgrids (MG), the presence of multiple renewable energy resources and energy 
storage systems (ESS) necessitates the implementation of an energy management 
system (EMS). This EMS is capable of effectively managing the stochastic 
characteristics of renewable energy resources, as well as scheduling the power output 
of these resources and ESS. However, the EMS is efficient in managing the power flow 
between the MG resources and the main grid while ensuring cost-effective operation. 

 
Figure 5. Comparison results of load demand between the proposed and existing 

methods 

 The study of the system's load requirement using both modern and traditional 
methods is shown in Figure 5. Additionally, the suggested method's maximum 
generated and used powers are studied and contrasted with those of the existing 
techniques. The graphics demonstrate how the suggested method forecasts load 
demand more accurately than current methods. The effectiveness of the novel method 
is assessed by comparing its fitness graphs, computation times, and overall generation 
costs with existing approaches. Supporting the result of Shufian and Mohammad 
(2022) revealed in their study that the intermittent characteristics of renewable 
energy resources, as well as the load and market pricing, as noteworthy creative 
considerations in the context of MG. In the traditional heuristic approach, data is 
subject to forecasting with a degree of uncertainty rather than being known with 
absolute precision. One potential approach for enhancing the operational efficiency of 
microgrids is through the utilisation of optimization-based techniques to enhance the 
development of energy storage systems and energy management systems (EMS). And 
that the EMS plays a crucial role in the integration of distributed energy resources in 
the microgrid systems, particularly in when power generation, transmission, 
distribution, utilisation, and variable pricing are involved. 
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Figure 6. comparison results of energy  

 Figure 6 depicts the results of the energy comparison between the suggested 
and existing techniques. It illustrates the BECC's capacity during the course of a 24-
hour summer day. As illustrated in Fig. 6, both optimal scheduling theories predict that 
the BESS will charge and discharge during off-peak and peak hours, respectively. 
Because of the AEHO, the BESS may charge at full capacity for the first six hours of the 
day and discharge at around half capacity during peak hours. BESS begins charging 
after peak hours and eventually reaches its initial capacity limit. This findings was in 
agreement with the work of Wang, Deb, and Coelho (2015) who posit that the non-
linear attributes of a Battery Energy Storage System (BESS) might lead to 
discrepancies in the stored energy between the planned operation and the actual 
operation. The energy held in a Battery Energy Storage System (BESS) exhibits a non-
linear relationship with the charging/discharging power. This relationship is 
determined using the Special Ordered Set of the Type 2 (SOS2) approach. The unit 
commitment (UC) problem in a microgrid context incorporated the application of 
BESS-operation models that provide constant power conditioning system (PCS) 
input/output power efficiency. The Battery Energy Storage System (BESS) 
demonstrated a similar operational performance to the real-world scenario when 
compared to the conventional model, resulting in a reduction in the margin of error 
during the energy charging and discharging process. As a result, the SOS2 system was 
rendered economically viable through the implementation of measures aimed at 
minimising the expenses associated with mistake correction and mitigating the 
likelihood of straying from the designated operational parameters of the Battery 
Energy Storage System (BESS). In addition, the SOS2 algorithm demonstrates effective 
resolution of operational challenges arising from the nonlinearity inherent in Battery 
Energy Storage Systems (BESS). 

5. Conclusion 

 The energy crisis, the degeneration of the current power grid, and the emission 
issues compel people to investigate the area of smart grids, in which MGS with integrated 
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renewable resources play an important role. As a result, having a well-planned and 
managed power management system is critical. In this study, the goal is to reduce the 
overall operating expenses of grid-connected MGS as well as short-term projections of PV 
electricity and load demand. Forecasts, schedules, DAQ, and HMI are all part of EMS-HANN. 
The forecasting module provides an enhanced hybrid forecasting technique that combines 
a 3-level SWT and GWO-HANN. PV power and load needs may be forecasted in advance. 
The scheduling module employs AEHO scheduling to ensure that grid-connected MGS 
receives the maximum amount of power flow. The forecasting and scheduling modules' 
input variables are then monitored, assessed, and modified using the DAQ and HMI 
modules. The quantity of energy transmitted between the MGS and the main grid to charge 
PHEVs grows as RER/DER generation rises, in accordance with the findings of offline 
digital time-domain simulations and software verification. The results show that the 
suggested power management technique works better than previously reported solutions. 

6. Implications of the Study  

The following implication of findings are proffer for the study of optimized hybrid 
artificial neural network (ANN) for managing energy in microgrid applications 

 It leads to increased energy self-sufficiency, reducing dependency on the main 
grid and promoting energy resilience during outages. 

 It optimizes energy generation and distribution, minimizing costs and 
environmental impact while ensuring a stable power supply. 

 This technology supports the integration of renewable energy sources, 
contributing to a greener energy landscape. 

 The use of an optimized hybrid ANN in microgrid energy management signifies a 
significant step towards sustainable and resilient energy systems, with far-
reaching implications for a cleaner and more reliable energy future. 

7. Limitations of the Study 

This study has encountered certain limitations worth acknowledging including: 

1. The accuracy of the HANN model heavily depends on the quality and quantity of 
data available for training. Inadequate or noisy data also led to suboptimal 
performance. 

2. The computational complexity of the HANN poses challenges for real-time 
implementation, particularly in resource-constrained environments. 

3. The generalisability of the HANN across different microgrid scenarios and system 
configurations requires further fine-tuning for diverse applications. 

4. The cost of implementing a sophisticated EMS using HANN is prohibitive for 
smaller scale microgrids. 

8. Future Research Directions 

Future research directions in the field of energy management systems (EMS) for 
hybrid energy systems in microgrid applications hold significant promise for 
advancing renewable energy integration and grid sustainability. One emerging avenue 
of exploration is the utilization of optimized hybrid artificial neural networks (ANNs) 
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to enhance EMS performance. 

Firstly, future research should focus on developing more sophisticated ANN 
architectures tailored specifically for microgrid applications. These ANNs should 
incorporate deep learning techniques, reinforcement learning, and advanced optimization 
algorithms to improve prediction accuracy and decision-making within the EMS. 

Secondly, the integration of real-time data from Internet of Things (IoT) devices 
and advanced sensors can further enhance EMS capabilities. This can lead to more 
accurate forecasting of renewable energy generation, load demand, and storage 
capacity, enabling finer-grained control of energy flows within microgrids. 

Thirdly, exploring the potential of decentralized EMS algorithms that enable 
microgrids to autonomously exchange surplus energy with neighboring grids or adapt 
to dynamic changes in energy supply and demand is crucial. This can improve grid 
resilience and facilitate peer-to-peer energy trading. 

Lastly, sustainability and environmental impact assessments should be integrated 
into EMS design, ensuring that future systems consider not only economic but also 
ecological factors. 
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