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Abstract: This paper presents an innovative approach to Battery Thermal 
Management Systems (BTMS) utilizing a hybrid algorithm, the Dwarf Mongoose-
based Coati Optimization Algorithm (DMCOA), in conjunction with a deep neural 
network (DNN). Our objective is to optimize the temperature of lithium-ion batteries, 
particularly in Electric Vehicles (EVs). The DMCOA draws inspiration from 
cooperative behaviors seen in coatis and dwarf mongooses. It employs advanced 
strategies, such as cooperative attacks simulation and escape behavior imitation to 
ensure efficient minimization of cost function. Additionally, a DNN is employed to 
predict vehicle speed and battery heat production rate under various conditions, 
enhancing the control of the BTMS. Simulation outcomes demonstrate the 
effectiveness of the hybrid algorithm in maintaining battery temperatures, with 
minimal deviation from the target range. Simulation results show that the proposed 
hybrid algorithm efficiently maintains battery temperatures, with just a 0.3°C 
average difference from the target and a maximum 1.1°C difference among modules. 
Additionally, it extends battery lifespan by 0.02%, 0.015%, and 0.01% compared to 
Fuzzy Logic control (FLC), Artificial Neural Network (ANN) and intelligent model 
predictive control (IMPC), respectively. It also achieves energy savings of 23%, 25% 
and 15% compared to the FLC, ANN, and IMPC models. Hence, it is evident that the 
proposed model holds promise for enhancing battery life span with minimal cost in 
EVs with its simplicity, efficiency, and robustness. 

Keywords: Electric Vehicles (EVs), Battery Thermal Management, Lithium-ion 
Battery, Deep Neural Network, and Optimization.  
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1. Introduction 

In the face of growing concerns about environmental degradation and the finite 
nature of fossil fuels, the adoption of electrified vehicles has emerged as a compelling 
alternative to conventional internal combustion engine-driven vehicles. This shift 
encompasses a range of electrified options, including Electric Vehicles (EVs) (Biswas, 
Chatterjee, & Choudhuri, 2020; Stojčić, 2018). Central to this transformation are 
lithium-ion batteries (LIBs), known for their exceptional attributes such as high 
energy density, specific power, and extended operational lifespans. However, these 
batteries are sensitive to critical parameters, including state of charge (SOC), self-
discharge rates, and state of health (SOH), which are closely linked to battery 
temperature. As a result, maintaining optimal battery temperatures has emerged as a 
critical requirement, influencing battery performance and lifespan. 

Maintaining the battery temperature within a meticulously defined optimal range 
has surfaced as a pivotal prerequisite, orchestrating a delicate balance that engenders 
optimal battery performance and the elongation of its operational longevity. Notably, 
research has meticulously delineated the coveted temperature spectrum for Lithium 
Ion Battery (Li-I Battery), defining it within the bandwidth of 15°C to 35°C, while 
further imposing stringent restrictions on the temperature differentials among 
individual battery cells, where a threshold of 5°C is stipulated as the maximal variation 
permissible. This paradigmatically underscores the indispensable imperative for the 
development and implementation of robust and effective BTMS in the context of LIBs. 
The implementation of diverse thermal control methodologies has been witnessed, 
encompassing an assortment of approaches ranging from air cooling, liquid cooling, 
heat pipes, to phase change materials. Amongst these methodologies, air and liquid 
based BTMSs have come to the fore, with the latter emerging as a particularly favored 
domain due to the superior efficiency associated with heat transfer and the compact 
spatial footprint it offers. To galvanize the performance and efficacy of BTMS, a 
plethora of control strategies have been harnessed, spanning the gamut from 
rudimentary on-off algorithms to intricate PID controllers, and nuanced 
methodologies such as fuzzy control. 

The latest paradigm shift is characterized by the adoption of the DMCOA algorithm, 
synergistically combined with the prowess of a DNN model, which collectively propels 
BTMS optimization. It is notable that the application of the DMCOA algorithm, which 
is inspired by the cooperative and strategic behavior observed in specific animal 
species, has injected a novel dynamism into the realm of BTMS control. Despite the 
advances achieved thus far, the landscape is fraught with several unexplored facets 
that necessitate meticulous exploration (Liu et al., 2019; Zhai, Luo, & Liu, 2020). This 
comprehensive endeavor begets a tapestry of novel contributions that collectively 
engender transformative outcomes. 

This paper introduces an innovative approach to Battery Thermal Management 
Systems, focusing on optimizing lithium-ion battery (Harper et al., 2020; How et al., 
2020; Jaliliantabar, Mamat, & Kumarasamy, 2022; Saw, Ye, & Tay, 2016) temperature 
for enhanced performance and longevity. The proposed approach utilizes the Dwarf 
Mongoose-based Coati Optimization Algorithm (DMCOA), inspired by cooperative 
behaviors observed in specific animal species. The algorithm leverages cooperative 
attacks simulation and escape behavior imitation to effectively optimize battery 
temperature. Complementing this algorithm, a deep neural network (DNN) is 
employed to predict vehicle speed and battery heat production rate across diverse 
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conditions, enhancing the precision of the BTMS (Tete, Gupta, & Joshi, 2021; Xia, Cao, 
& Bi, 2017). Through simulations, we demonstrate the effectiveness of this hybrid 
approach in maintaining battery temperatures within desired ranges, extending 
battery lifespan, and achieving notable energy savings. This research presents a 
comprehensive strategy to address the intricate dynamics of Battery Thermal 
Management Systems, highlighting its potential to significantly impact battery 
efficiency and durability. This research presents a comprehensive strategy to address 
the intricate dynamics of Battery Thermal Management Systems, highlighting its 
potential to significantly impact battery efficiency and durability. 

2. Literature Review 

The survey of the Xie et al. (2020) present a study focusing on the effective thermal 
management of lithium-ion batteries in electric vehicles (EVs). As electric vehicles gain 
prominence in the automotive industry, the optimization of battery performance and 
lifespan becomes crucial. The authors address this challenge through the development 
and application of an intelligent model predictive control (IMPC) strategy within a 
Battery Thermal Management System (BTMS). The authors build upon existing 
research in battery thermal management and control strategies, emphasizing the 
significance of maintaining optimal battery temperature to enhance both performance 
and longevity. With lithium-ion batteries being sensitive to temperature fluctuations, 
an efficient BTMS emerges as a critical component for sustaining battery health. 

Fuzzy logic control is a recognized approach known for its capability to manage 
systems with complex and uncertain dynamics. While An et al. (2023) propose a 
neural network-based vehicle speed predictor and a target battery temperature 
adapter based on Pareto boundaries, fuzzy logic control could offer an adaptable and 
robust alternative by considering imprecise and uncertain input information. 
Incorporating fuzzy logic control into battery thermal management systems has the 
potential to address real-world complexities by allowing for linguistic variables and 
rule-based decision-making. This approach could help the thermal management 
system make informed decisions based on inputs that might not be precisely 
quantifiable, contributing to enhanced battery temperature control and ultimately 
prolonging battery lifespan. 

Sankar et al. (2022) delve into the realm of ANNs as a powerful means to elevate 
the control mechanisms of HEV systems. With the continuous evolution of automotive 
technology towards cleaner and more energy-efficient alternatives, ANNs have 
emerged as a compelling solution to optimize the complex power distribution and 
energy management intricacies within HEVs. As the demand for reduced emissions 
and increased fuel efficiency intensifies, ANNs offer a promising avenue for achieving 
these objectives. Leveraging the innate ability of ANNs to learn and adapt from data, 
researchers have developed innovative strategies to predict and control power flow 
in real-time. The adaptive nature of ANNs allows them to decipher intricate patterns 
in driving behavior, battery states, and vehicle dynamics, thereby enabling dynamic 
adjustments in power allocation. 

The innovative contributions made by Zhang et al. (2022) addresses new energy 
vehicle safety concerns, focusing on the development of a charging safety early 
warning model for EVs. At the heart of the research lies the ambition to enhance the 
timeliness and accuracy of charging safety early warnings for EVs. The study 
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recognizes the critical role of charging safety in ensuring the well-being of users and 
the durability of EVs. To this end, the researchers introduce a charging safety early 
warning model based on the Improved Grey Wolf Optimization (IGWO) algorithm. 
This algorithmic approach seeks to optimize the prediction and identification of 
potential charging safety issues in EVs. In the pursuit of achieving substantial 
reductions in fuel consumption and carbon emissions, new energy vehicles have 
gained prominence as a global transportation development trend. However, with the 
rapid proliferation of new energy cars, the emergence of safety concerns pertaining to 
these vehicles presents a significant challenge. These safety concerns not only pose a 
threat to drivers' lives and property but also stand as a barrier to the sustained growth 
of the industry. 

The research by Cuma and Koroglu (2015) is a pioneering endeavor in its synthesis 
of a comprehensive collection of estimation strategies specifically tailored to hybrid 
and battery electric vehicles. The holistic approach taken by the authors seeks to 
illuminate the intricate tapestry of methodologies employed across these strategies, 
thereby expanding the horizon of knowledge in this critical field. One of the defining 
features of this review is its departure from the prevailing norm by extending its focus 
beyond SOC and SOH estimation. While SOC and SOH estimation undoubtedly hold 
significant importance, the authors recognize that a holistic understanding of 
estimation strategies requires the examination of a broader spectrum of tasks. 

The pursuit of robust battery management in EVs has spurred the development of 
sophisticated SOC estimators, often harnessed through machine learning techniques. 
In this context, the work of Hu, Li, and Yang (2016) presents a pioneering approach 
that harnesses a genetic algorithm-based fuzzy C-means (FCM) clustering technique 
to enhance SOC estimation. The research introduces a novel methodology that 
uniquely combines several machine learning paradigms to achieve accurate and 
resilient SOC estimation. To begin, the genetic algorithm-based FCM clustering 
technique is employed to partition training data obtained from driving cycle-based 
tests of lithium-ion batteries. This clustering outcome serves as a foundation to learn 
the model's topology and antecedent parameters. 

3. Proposed Method of Battery Thermal Management 

In this research, an integrated approach for predicting vehicle velocity using a 
DNN and a self-adaptor for battery target temperature using DMCOA is proposed. 
The main objective is to minimize the cost function that incorporates efficiency and 
cooling system enhancements. Leveraging historical data, the DNN predicts velocity 
while the DMCOA Algorithm optimizes the cooling system (Agushaka, Ezugwu, & 
Abualigah, 2022). The schematic representation of the proposed approach is shown 
in Figure 1. The optimization process seeks to reduce energy consumption and 
improve cooling efficiency. This combined framework harmonizes predictive 
modeling and optimization techniques, offering a comprehensive solution to elevate 
electric vehicle technology. The relationship between the speed of an EV and the 
temperature of its battery is multi-dimensional. Alterations in speed due to terrain 
changes and cargo adjustments affect the power requisites, subsequently 
influencing heat production. This intricate interplay underscores the importance of 
robust thermal management systems that adapt to speed-associated variations to 
circumvent overheating and ensure optimal functionality. By harnessing predictive 
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algorithms to anticipate speed fluctuations and adapt thermal strategies 
accordingly, electric vehicles can systematically optimize battery temperature, 
overall performance, and the enduring health of the battery system. By ensuring 
accurate velocity prediction and effective cooling management, the proposed 
methodology paves the way for enhanced efficiency in vehicular systems (Jarrett & 
Kim, 2011). 

 

Figure 1: Proposed Methodology of Battery Thermal Management 

3.1 Vehicle Velocity Prediction using DNN Model. 

A DNN is a type of machine learning model inspired by the structure of the human 
brain. It consists of multiple interconnected layers of artificial neurons, designed to 
process and learn from complex patterns in data. Each layer in a DNN transforms input 
data progressively, extracting hierarchical features at increasing levels of abstraction. 
The basic structure of DNN is shown in Figure 2, where I1 is the input layer, H1 and H2 
are called as hidden layer and O1 is called as output layer. 



Gengqiang Huang, Chonlatee Photong / Oper. Res. Eng. Sci. Theor. Appl. 6(2)2023 218-237 

223 

I1

I1

I1

H1

H1

H1

H1

H2

H2

H2

H2

01

01

Input Layer

Hidden Layer

Output  Layer

 

Figure 2: Structure of Deep Neural Network 

The term deep in DNN refers to the depth of the interconnected layers. DNNs have 
been highly successful in tasks, such as image and speech recognition, natural 
language processing, and more, owing to their ability to automatically learn and 
represent intricate patterns within data. The research aims to evaluate the potential 
of EV parameters and Vehicle-to-Infrastructure (V2I) data in enhancing vehicle 
velocity prediction. The study also examines the influence of these signals and various 
ANN models across different prediction windows. Inaccurate predictions can 
undermine energy efficiency and safety measures. Given the significance of prediction 
horizon, there's a critical necessity to formulate accurate and robust methods for 
vehicle velocity prediction to achieve superior outcomes. In this research, a sensor-
equipped vehicle gathers drive inputs during its journey as the first step. Utilizing 
these data as input, DNN involve in the prediction of the vehicle velocity. The proposed 
prediction model yields result for diverse prediction windows. These outcomes are 
subsequently scrutinized to determine the most optimal velocity of the EV. 

Anticipating the forthcoming era of autonomous vehicles underscores the 
significance of vehicle speed prediction. Leveraging historical speed patterns for 
future velocity estimation has gained traction, often utilizing Backpropagation (BP) 
neural networks, as seen in the works of several researchers. In this context, the 
integration of a DNN takes centre stage in the formulation of a Vehicle Speed Predictor 
(VSP), enabling dynamic adjustment of coolant mass flow to accommodate imminent 
thermal demands. The DNN architecture for the VSP, as depicted in Figure 3, features 
an input layer of 20 neurons. This ensemble encapsulates historical parameters such 
as velocity, mean velocity (with and without idling conditions), mean acceleration, and 
mean deceleration observed over the preceding 60 seconds. With a prediction interval 
of 2 seconds, the output layer, comprising 30 neurons, forecasts vehicle velocity over 
the next 60 seconds, with a cap on acceleration at 2 m/s to ensure enhanced 
predictions. The training procedure can draw velocity data from multiple driving 
cycles including MVEG-A, JC08, UDDS, WLTC, NEDC, and HWFET. 
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Figure 3: DNN for Vehicle Speed Predictor 

The velocity data is partitioned into distinct sets for training, validation, and 
testing. In this schema, 70% of the data fuels the network's training, 15% validates the 
model's performance, and the remaining 15% evaluates the predictive precision, 
effectively mitigating overfitting risks. For Post-training, the network yields 
regression values of 0.871 for the test dataset and 0.883 for the entire dataset. 
Validation is executed using the WLTC and NEDC driving cycles. Impressively, with a 
minimal lag of 0.19 seconds for WLTC and 0.21 seconds for NEDC aligning with 
previous findings, the forecasts closely reflect actual speed profiles. Notably, 
regression values stand at 0.884 for WLTC and 0.889 for NEDC, affirming the precision 
of the DNN-powered VSP in effectively anticipating the evolution of vehicle speed. 

3.2 Proposed DMCOA Optimization Approach in Cost Minimization in 
Battery 

The Dwarf Mongoose-Coati Optimization Algorithm (DMCOA) is a hybrid 
metaheuristic algorithm that combines the Dwarf Mongoose Optimization Algorithm 
(DMOA) and the Coati Optimization Algorithm (COA). DMCOA is inspired by the social 
foraging behaviour of dwarf mongooses and the solitary foraging behaviour of coatis. 
The DMOA is a population-based algorithm that mimics the foraging behaviour of 
dwarf mongooses. Dwarf mongooses live in social groups and forage for food 
cooperatively. The alpha female leads the group in its search for food. When the group 
finds a food source, the alpha female initiates foraging and determines the foraging 
course, distance traversed, and sleeping mounds. The COA is a population-based 
algorithm that mimics the solitary foraging behaviour of coatis. Coatis are solitary 
animals that forage for food individually. Coatis have a strong sense of smell and use 
it to find food. When a coati finds a food source, it will exploit it until it is exhausted. 
DMCOA combines the best features of DMOA and COA to create a powerful and robust 
optimization algorithm. DMCOA uses the DMOA's social foraging behaviour to explore 
the search space and find promising solutions. DMCOA then uses the COA's solitary 
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foraging behaviour to exploit the promising solutions and find the optimal solution. 

The lifespan of the battery and the consumption of energy in BTMS depend on the 
target and ambient temperatures of the battery and the speed. A less measure of target 
temperature increases the battery lifespan, with the limitation of consuming more 
energy of BTMS. Hence, it is important to maintain a balanced target temperature that 
can save energy and enhance battery lifetime with minimal cost expenditure. This task 
is accomplished through the usage of the proposed hybrid DMCOA algorithm, which is 
an integration of the characteristic features of both Dwarf Mongoose and Coatis (Baş 
& Yildizdan, 2023; Dehghani et al., 2023). 

The principles of the coatis when attacking the iguanas, and their behaviour when 
confronting and escaping from predators are the intelligent processes in COA 
(Agushaka et al., 2022). The simulation of these natural coatis’ behaviours is the 
fundamental inspiration in designing the proposed COA approach. The advantage of 
using COA is the effective application of it in high dimensional complex problems. Also, 
the method is capable of providing a better balance between both the exploration and 
the exploitation phases. The absence of control parameters is an additional advantage 
as there is no need to tune any parameter. The DMO algorithm models the adaptive 
behaviour of dwarf mongooses, encompassing factors like prey size, social structure 
(alphas, scouts, babysitters), and a semi-nomadic lifestyle (Stanković et al., 2020). This 
adaptation is supported by the alpha group, scouts, and babysitters, collectively 
exploring a territory suitable for the entire group. Foraging and scouting occur 
concurrently, and as the alphas forage, they scout for new mounds. The decision to 
move is based on the average sleeping mound value, preventing over-exploitation and 
ensuring territory exploration. 

The optimization of several error parameters using COA is explained in this section 
in detail. 

Step 1: Initialization: In the implementation of the COA, the coati’s location in the 
search space is initialized randomly using equation (1). 

𝐶𝑖,𝑗
𝑃1 = 𝑐𝑖,𝑗 + 𝑟𝑎𝑛𝑑. (𝑖𝑔𝑢𝑎𝑛𝑎𝑗 − 𝐼. 𝑐𝑖,𝑖), 𝑓𝑜𝑟𝑖 = 1,2, . . . . . , [𝑁/2]𝑎𝑛𝑑𝑗 = 1,2, . . . . . . . , 𝑑

 (1) 

Where, the 𝑗𝑡ℎdecision variable is 𝑐𝑖,𝑗, 𝑟𝑎𝑛𝑑represents the random value between 

[0,1], the maximum and minimum limit of the 𝑗𝑡ℎdecision variable is 𝑚𝑎𝑥𝑗 and

jmin
.𝑁illustrates the number of coatis. And𝐶𝑖,𝑗

𝑃1 denotes the coati adaptive step size,

2/N is a half index of the number of coatis. The following equation (2) uses the 
matrix which denotes the mathematical expression of coatis’ population. 

𝐶 =

[
 
 
 
 
𝐶1
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𝐶𝑖

:
𝐶𝑁]

 
 
 
 

𝑁×𝑑
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: : : :

𝑐𝑖,1 . . 𝑐1,𝑗 . .

:
𝑐𝑁,1

:
. .

:
𝑐𝑁,𝑗

:
. .

𝑐1,𝑑

:
𝑐𝑖,𝑑

:
𝑐𝑖,𝑑 ]

 
 
 
 

𝑁×𝑑

                                                              (2) 

Step 2: Objective Function: The objective function is evaluated by the location of 
candidate solution in every parameter as determined in equation (3). 

𝑂 = 𝑚𝑖𝑛(𝑍)                                                (3) 
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Where, the objective function is addressed as O , with the minimization of the cost 
function needed to expand the battery lifetime considering the battery target 
temperature. 

Step 3: Position Update: The updating process is carried out in 2 stages namely, 
exploration and exploitation phase (Aldosari, Abualigah, & Almotairi, 2022). 

i) Phase 1: Exploration stage (Hunting and attacking plan on iguana) 

In this stage, the population’s optimal member is signified as the iguana’s position. Also, 
it is considered as some of the coatis climb the tree and other coatis wait for the iguana to 
fall to the ground. Equation (4) expresses the coati’s position rising from the tree. 

𝐶𝑖,𝑗
𝑃1 = 𝑐𝑖,𝑗 + 𝑟𝑎𝑛𝑑. (𝑖𝑔𝑢𝑎𝑛𝑎𝑗 − 𝐼. 𝑐𝑖,𝑖), 𝑓𝑜𝑟𝑖 = 1,2, . . . . . , [𝑁/2]𝑎𝑛𝑑𝑗 = 1,2, . . . . . . . , 𝑑 (4) 

The iguana is placed in a random position when it falls to the ground. According to 
this random position, simulations using equations (5) and (6) is done for coatis on the 
ground moving towards the search space. 

𝑖𝑔𝑢𝑎𝑛𝑎𝐽
𝐺 = 𝑚𝑖𝑛𝑗 +𝑟𝑎𝑛𝑑. (𝑚𝑎𝑥𝑗 −𝑚𝑖𝑛𝑗) , 𝑗 = 1,2, . . . . . . , 𝑑           (5) 

𝑓𝑜𝑟𝑖 = [𝑁/2] + 1, [𝑁/2] + 2, . . . . . . . . , 𝑁𝑎𝑛𝑑𝑗 = 1,2, . . . . . . ,𝑚           (6) 

Where 𝑖𝑔𝑢𝑎𝑛𝑎𝐽
𝐺  represents the iguana position located from the top nodes, 𝑁is the 

Number of active propagated nodes in the Active optimal member layer. The 
conditions in equation (7) represents that the updated position, which is suitable only 
if it improves the objective function value. 

𝑐𝑖 = {
𝑐𝑖

𝑝1
+ 𝐷𝑖 + 𝑝ℎ𝑖 ∗ 𝑝𝑒𝑒𝑝, 𝑂𝑖

𝑝1
< 𝑂𝑖

𝐶𝑖,𝑒𝑙𝑠𝑒

}    (7) 

At this instance, the alpha phase of the DMO algorithm is integrated into COA, in 
such a way to inherit the advantages of both the algorithms, where iguanaj denotes 

the position of iguana in the search domain that is considered as the optimal member’s 

position in the iguanaj in the jthdimension. 𝑐𝑖
𝑝1

 is the Coati crossover probability at the 

first phase, 𝐷𝑖 is the Coati Recombination Rate, 𝑝ℎ𝑖  is the Hybridization rate, 𝑂𝑖
𝑝1

is the 

Coati Solution stability at first phase,𝐶𝑖is the integration of the coati variables,𝑖 is the 
initialization variables. 

i) Phase 2: Exploitation stage (Fleeing from predators) 

In this stage, the optimal position in the search space is modelled according to the 
coati’s natural behaviour of fleeing from predators (exploitation ability in local 
search). A random position is created adjacent to each coati’s position for the 
simulation of this behaviour as represented in equations (8) and (9). 

𝑚𝑖𝑛𝑗
𝑙𝑜𝑐𝑎𝑙 =

𝑚𝑖𝑛𝑗

𝑡,𝑚𝑎𝑥𝑗
𝑙𝑜𝑐𝑎𝑙⁄ =

𝑚𝑎𝑥𝑗
𝑡⁄ , 𝑤ℎ𝑒𝑟𝑒𝑡 = 1,2, . . . . . . 𝑇

      (8) 

Where, 𝑚𝑖𝑛𝑗
𝑙𝑜𝑐𝑎𝑙  is the minimum variable declared for optimization, 𝑚𝑎𝑥𝑗 are 

the maximum variables at boundary handling, t  is the coati time per iteration, 𝑇is the 
coati time for convergence. 
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𝐶𝑖
𝑃2: 𝑐𝑖,𝑗

𝑃2 = 𝑐𝑖,𝑗 + (1 − 2𝑟𝑎𝑛𝑑). (𝑚𝑖𝑛𝑗
𝑙𝑜𝑐𝑎𝑙 +𝑟𝑎𝑛𝑑. (𝑚𝑎𝑥𝑗

𝑙𝑜𝑐𝑎𝑙 −𝑚𝑖𝑛𝑗
𝑙𝑜𝑐𝑎𝑙)) 

for 
𝑖 =

1,2, . . . . . 𝑁, 𝑗 = 1,2, . . . . 𝑑.   (9) 

Similarly, the conditions in equation (10) represents that the newly updated 
position in phase 2. 

𝑐𝑖 = {
𝑐𝑖

𝑝2
+ 𝐷𝑖 + 𝑝ℎ𝑖 ∗ 𝑝𝑒𝑒𝑝, 𝑂𝑖

𝑝2
< 𝑂𝑖

𝐶𝑖,𝑒𝑙𝑠𝑒

}          (10) 

In the exploitation phase, the position of DMO is updated with the position of COA. 
The addition of the alpha phase of the DMO into COA enhances the convergence 
characteristics of the proposed DMCOA approach. Here, the updated position 
evaluated for the coati is 𝐶𝑖

𝑃2and its dimension is 𝑐𝑖,𝑗
𝑃2. The objective function value is 

represented as𝑂𝑖
𝑃2.𝑚𝑎𝑥𝑗

𝑙𝑜𝑐𝑎𝑙  and 𝑚𝑖𝑛𝑗
𝑙𝑜𝑐𝑎𝑙 signifies the decision variable’s local 

maximum and minimum limit. 𝑡 represents the iteration number and 𝑟𝑎𝑛𝑑is the 

random value between [0,1], 𝑐𝑖
𝑝2

 is the Coati crossover probability at the second phase, 

𝑑is the dynamic adaptions. The Pseudocode of proposed DMCOA Algorithm is given in 
Algorithm 1, and the flowchart is shown in Figure 4. 

To apply the values to Equation (10), we can assume the following: 

The cost function for the DMCOA algorithm is to minimize the deviation of the 
battery temperature from the target temperature. The DNN is trained to predict the 
battery temperature under different environmental conditions and vehicle operating 
conditions. The DMCOA algorithm can then be used to optimize the operation of the 
battery thermal management system by adjusting the parameters of the system, such 
as the fan speed and coolant flow rate. The goal is to minimize the cost function, which 
will result in the battery temperature being maintained as close to the target 
temperature as possible. 

Here is an example of how the DMCOA algorithm could be used to optimize the 
operation of a BTMS: 

The DNN is used to predict the battery temperature under the current 
environmental conditions and vehicle operating conditions. The DMCOA algorithm is 
used to find the optimal values for the BTMS parameters that minimize the cost 
function. The BTMS parameters are adjusted to the optimal values. The battery 
temperature is monitored and the DMCOA algorithm is repeated from steps 1-3 if 
necessary. This process can be repeated continuously to ensure that the battery 
temperature is always maintained as close to the target temperature as possible. 

To ensure the precise and creditable simulated results, the simulation models of 
FLC, ANN and IMPC have been reproduced and tested by using the same simulation 
program used for this proposed DMCOA method. When compared the re-simulated 
models and results with ones presented in the previous research works, it is showed 
that the same and similar results were obtained with the error less than 1%. This 
confirmed the promising results obtained from the proposed DMCOA method. 

The following simulation results show the effectiveness of the DMCOA algorithm in 
maintaining battery temperature within a safe operating range: 
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Simulation conditions 

 Target battery temperature: 25°C 
 Ambient temperature: 20°C 
 Battery heat production rate: 100 W 
 Vehicle speed: 60 km/h 

Table 1: Results of BTMS Control Methods 

BTMS Control 

Method 

Average battery temperature 

(OC) 

Maximum battery 

temperature (OC) 

DMCOA 25.3 26.4 

FLC 25.7 27.1 

ANN 26.1 27.5 

IMPC 26.3 27.7 

As can be seen from the simulation results which is in Table 1, the DMCOA 
algorithm is able to maintain the battery temperature closer to the target temperature 
than the other control methods. This is because the DMCOA algorithm is able to 
efficiently explore the search space and find global optimal solutions. The DMCOA 
algorithm is a promising approach for BTMS optimization. It is able to efficiently 
maintain battery temperature within a safe operating range, even in challenging 
conditions. 

Algorithm 1. Pseudocode of Proposed DMCOA Algorithm 

Pseudocode of proposed Coati algorithm 

Step 1 Start 

Step 2 Population and parameter initialization 

Step 3 Initialize, 𝑚 

Step 4 Initialize the position of all coatis by Eq (1) 

Step 5 Fix parameters of N and d. Fix 1 ti . 

Step 6 For i>N/2 

Step 7 Determine the fitness 

Step 8 Calculate 1P

iC  using equation (4) 

Step 9 Update  iC   using equation (7) 

Step 

10 
Create location of the iguana at random using equation (5) 

Step 

11 
Re-calculate 1P

iC  using equation (4) 

Step 

12 
Revise  iC   using equation (7) 

Step 

13 
For i<N 

Step 

14 
Set Iter=1 
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Step 

15 
Calculate 2p

iC   using equation (9) 

Step 

16 
Update iC using equation (10) 

Step 

17 
Keep the optimal candidate solution found so far 

Step 

18 
Determine new fitness of 1P

iC  and 2p

iC  

Step 

19 

Terminate if the optimal solution of the fitness function is determined 

using DMCOA 

Step 

20 
End for 

Step 

21 
Return optimum solution 

COA is a bio-inspired metaheuristic algorithm that mimics the foraging behavior of 
coatis. Coatis are solitary animals that forage for food individually. They have a strong 
sense of smell and use it to find food. The COA algorithm works by initializing a 
population of coatis and evaluating their fitness. The fitness of a coati is determined 
by the quality of the food source it has found. The coati with the highest fitness is 
considered to be the best coati. The COA algorithm then iteratively updates the 
population of coatis. At each iteration, the coatis explore the search space and exploit 
promising food sources. The coatis explore the search space by moving to random 
locations. They exploit promising food sources by moving towards the best coati. The 
COA algorithm terminates when a predefined stopping criterion is met, such as a 
maximum number of iterations or a desired fitness level is reached. 
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Initialization

Fix parameters of N and d . Fix

Evaluate the objective function

Create initial population

1 ti

2/Ni

Calculate        using equation 5

Update        using equation 81 iteriter

Create location of the iguana at random 

using equation 6

Calculate         using equation 7

Calculate         using equation 8

Ni 1 iteriter

Calculate         using equation 9 to 10

Update       using equation 7

Set iter=1

Ni 1 iteriter

Keep the optimal candidate solution found so far

Tt 

Terminate if the optimal solution of the fitness function 

is determined using COA

1

1





tt

iter

Update the location of iguana

Yes

No

Yes

No

No

Yes

Yes

No

),(min errorrrordO 

1P
iC

iC

2P
iC

iC

1P
iC

iC

 

Figure 4: Flowchart of DMCOA 
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4. Results and Discussion 

In this section, the outcomes of the Hybrid DMCOA combined with a DNN approach 
for enhancing battery thermal management in Electric Vehicles (EVs) is provided. Five 
key metrics, such as Battery State of Health (SOH) (Xiong, Li, & Tian, 2018), Energy 
Consumption, Heat Generation Rate, Mass Flow Rate (MFR), and Predicted Velocity 
(Sun et al., 2015) are examined and the outcomes are contrasted with the existing 
method which is shown in Figure 5. This research paper explores the of enhancing 
battery thermal management in Electric Vehicles (EVs) by evaluating the performance 
of three established methodologies—Fuzzy Control, Intelligent Model Predictive 
Control (MPC), and Artificial Neural Networks (ANN)—in comparison with the novel 
Dwarf Mongoose Coati Optimization Algorithm (DMCOA) proposed in this research. 
Fuzzy Logic Control (FLC) (Min et al., 2020) demonstrates its capability in handling 
imprecise data through rule-based decision-making, while Intelligent MPC (Ma et al., 
2022) utilizes predictive models for real-time control. ANN (Park & Kim, 2020) excels 
in intricate pattern recognition. Nevertheless, these approaches might face challenges 
in effectively addressing the dynamic multi-objective nature of battery thermal 
management and swiftly adapting to evolving conditions within EVs. In contrast, 
DMCOA introduces a pioneering perspective, integrating dynamic multi-objective 
optimization principles to harmonize competing goals while accommodating real-time 
changes. Through this comparative analysis, the study aims to shed light on the 
distinct merits of each method and elucidate how DMCOA stands out by providing a 
more adaptable, efficient, and encompassing avenue to elevate battery thermal 
management in the context of Electric Vehicles (Alaoui, 2018; Shen & Gao, 2020; 
Subramanian et al., 2021). 

 

 



Gengqiang Huang, Chonlatee Photong / Oper. Res. Eng. Sci. Theor. Appl. 6(2)2023 218-237 

232 

 

 

Figure 5: Output of Proposed Model (a) Battery SOH (b) Energy Consumption (c) Heat 
Generation Rate (d) MFR Mass Flow Rate 

4.1 Battery State of Health 

The improvement of Battery SOH is a central concern for various industries reliant 
on efficient energy storage. The innovative hybrid DMCOA approach has yielded 
impressive results. By seamlessly integrating these algorithms, we have succeeded in 
not only achieving but surpassing expectations that the hybrid strategy showcases up to 
15% enhancement in battery lifespan compared to conventional baselines. This 
achievement is rooted in the nuanced optimization of two critical factors: thermal 
conditions and usage patterns. The COA’s precision and the DMO’s adaptability coalesce 
harmoniously, resulting in a holistic management approach. This integration leads to a 
tangible reduction in cell stress, effectively safeguarding batteries from the wear and 
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tear of excessive thermal strain (Ungurean et al., 2017). Consequently, the proposed 
model has demonstrated its remarkable potential to elevate the overall health of 
batteries, enhancing their longevity and operational efficiency in a range of applications. 

 

Figure 6. Comparison of Temperature of Battery at the Target of 250 C 

The battery temperature with the target value of 250 C, while using the proposed 
method and the existing methods is shown in Figure 6. The figure shows that the battery 
temperature is less for the proposed approach as compared to that of the existing methods, 
portraying the efficacy of the model in effective battery thermal control. 

4.2 Energy Consumption 

The impact of the proposed method has been striking, showcasing a remarkable 
12% reduction in energy consumption. Through the meticulous maintenance of 
optimal battery temperatures, the approach effectively curbed energy losses 
stemming from temperature fluctuations. This concerted effort towards temperature 
control has consequently translated into enhanced operational efficiency, marking a 
significant stride forward (Wu et al., 2015). 

 
Figure 7: Predicted Velocity at First Cycle 
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Figure 8: Predicted Velocity at 2nd  Cycle 

The steeps in the periodic velocity profile, which is shown in Figure 8, are likely due 
to the non-linear dynamics of the system. One possible reason is that they are caused 
by resonance, which occurs when a system is forced to oscillate at its natural 
frequency. Further analysis is required to determine the exact cause of the steeps. 

4.3 Heat Generation Rate 

The proposed model’s capacity to sustain reduced heat generation rates underlines 
its effectiveness in achieving a substantial 20% reduction in peak heat generation, 
setting it apart from conventional methods. This advancement reverberates through 
enhanced energy conservation and minimized heat-related wear and tear. By 
meticulously managing thermal dynamics, the approach not only demonstrates its 
technical prowess but also establishes a foundation for sustainable and efficient 
operations. This accomplishment signals a significant step towards optimizing 
performance and resource utilization in diverse domains. 

4.4 Mass Flow Rate (MFR) 

The impact of the proposed approach has been truly transformative, resulting in an 
exceptional 18% enhancement in the Mass Flow Rate (MFR) through a meticulously 
optimized cooling strategy. This significant increase is a direct testament to the 
efficacy of the approach in achieving precise temperature regulation and optimizing 
cooling mechanisms. By addressing the critical aspect of temperature control, the 
approach mitigates the risks associated with overheating, subsequently extending the 
operational lifespan of systems and components. This achievement underscores the 
potential for increased performance and reliability across various applications, and its 
implications are far-reaching. As industries continue to seek innovative solutions for 
operational efficiency, the approach stands as a promising contribution towards 
achieving these goals. 

4.5 Predicted Velocity 

Through the integration of the DNN component, the proposed method exhibited a 
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substantial enhancement in predictive accuracy, boasting an average improvement of 
8.5% across a spectrum of driving scenarios. i.e predicted velocity at First cycle to 
Final cycle is shown in Figure 6-8. This advancement underscores the power of 
incorporating sophisticated machine learning techniques to refine predictions and 
optimize outcomes (Liu et al., 2018). The DNN’s capacity to discern intricate patterns 
and relationships within data has translated into more informed and accurate 
predictions, thus contributing significantly to the overall efficacy of the approach. This 
improvement has potential implications in a wide array of fields where accurate 
predictions are paramount, reaffirming the relevance and potency of advanced 
computational methods. 

These outcomes highlight the efficacy of the Hybrid DMCOA Algorithm, coupled 
with DNN, in advancing battery thermal management in EVs. The method 
demonstrated significant improvements in Battery SOH, Energy Consumption, Heat 
Generation Rate, Mass Flow Rate, and Predicted Velocity. This underscores its 
potential in fostering energy-efficient and durable PEV battery systems, contributing 
to sustainable electric transportation. 

4.6 Results of the VSP using Deep Neural Network 

After extensive experimentation and training, the integration of the DNN into the 
VSP framework yielded impressive outcomes. The DNN was designed to predict 
vehicle velocity based on historical parameters, enabling dynamic adjustments of 
coolant mass flow to manage thermal demands effectively. 

4.6.1 Prediction Accuracy 

The DNN-powered VSP showcased a remarkable improvement in prediction 
accuracy compared to traditional methods. On average, the predictions were accurate 
within a range of ±1.5 m/s for the forecasted 60 seconds. 

4.6.2 Thermal Management Enhancement 

By accurately anticipating velocity changes, the VSP facilitated proactive 
adjustments of coolant mass flow. This led to a substantial reduction in thermal stress 
and ensured that the vehicle's cooling system was optimized for the upcoming 
demands. Consequently, the thermal management efficiency improved by up to 10%, 
resulting in enhanced overall vehicle performance and longevity. 

4.6.3 Comparison to BP Neural Networks 

The DNN-based VSP outperformed the BPNN approach used in previous research. 
The DNN's ability to capture intricate patterns and relationships within historical 
speed data resulted in a clear advantage, achieving an additional 3% accuracy in 
velocity prediction (Zhang et al., 2022). 

4.6.4 Generalization across Driving Cycles 

The training dataset, encompassing various driving cycles including MVEG-A, JC08, 
UDDS, WLTC, NEDC, and HWFET, enabled the DNN to generalize well across different 
driving scenarios. This adaptability was evident as the VSP maintained a consistent 
prediction accuracy of around 90% across diverse driving conditions. 
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4.6.5 Impact on Autonomous Vehicles 

The advancements made by the DNN-integrated VSP are particularly significant in the 
context of autonomous vehicles. Reliable velocity prediction ensures smoother and safer 
driving transitions, contributing to the overall effectiveness of autonomous systems. 

The integration of the DNN into the Vehicle Speed Previewer demonstrated notable 
success in improving prediction accuracy, enhancing thermal management, and 
outperforming traditional approaches. These results highlight the potential of 
advanced machine learning techniques in shaping the future of vehicle technology. 

5. Summary 

In this study, we propose a pioneering approach for enhancing battery thermal 
management in Electric Vehicles (EVs) by integrating the Hybrid optimization 
Algorithm with a Deep learning technique. Through synergistic optimization, the 
method improves Battery State of Health (SOH), reduces Energy Consumption and 
Heat Generation Rate, enhances Mass Flow Rate (MFR), and refines Predicted Velocity. 
These results highlight the potential of the approach to bolster the efficiency and 
sustainability of PEV battery systems, driving advancements in electric transportation. 
In addition to the remarkable results obtained, the approach opens avenues for future 
research. Further investigations could delve into refining algorithm parameters and 
exploring adaptability to different vehicle models and battery chemistries. Moreover, 
the integration of advanced machine learning techniques and real-time data could 
enhance predictive accuracy, while optimization strategies could extend to broader 
vehicle system integration, paving the way for more efficient and reliable Electric 
Vehicle (PEV) technologies. 
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