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Abstract: In this paper, we propose a new multi-attribute decision-making (MADM) 
method based on probabilistic dual hesitant Pythagorean fuzzy (PDHPF) sets. The 
existing PDHPF power weighted Hamy mean operator has the drawback that if one 
PDHPF element among the PDHPF elements whose non-membership grade equals 0, 
then the non-membership grade of the aggregated PDHPF element is equal to 0. Thus, 
the existing MADM method based on the PDHPF power weighted Hamy mean operator 
has the drawback that it cannot distinguish the ranking orders of alternatives in some 
situations. To overcome these drawbacks of the existing MADM method, this paper 
proposes the PDHPF improved power weighted averaging (PDHPFIPWA) operator and 
proposes a MADM method based on the proposed PDHPFIPWA operator. The proposed 
MADM method can overcome the drawbacks of the existing MADM method. It offers us 
a very useful approach for MADM in PDHPF environments. 
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1. Introduction 

“It is impossible for decision-experts to give evaluation information quantitatively or 
qualitatively through accurate numerical values in various practical difficulties due to 
the irrationality of human thought and the growing complexity of day-to-day problems. 
(Zadeh, 1965) initially developed the idea of fuzzy set (FS) theory, which has been widely 
used for a variety of applications, to address this issue. In order to quantify the 
uncertainty in terms of membership degree (MD) and non-membership degree, 
Atanassov (Atanassov, 1986) suggested an intuitionistic fuzzy set (IFS) as an extension 
of FS (NMD). 

The shortcoming that Zadeh's FSs can only define fuzzy information through MD was 
remedied by IFS. Numerous academics have done in-depth research since IFSs were first 
proposed (Chen & Chang, 2016; Chen, Cheng, & Lan, 2016; Chen & Chu, 2020; Chen & 
Tsai, 2021; Dutta, 2021; Garg, 2017b, 2019; Garg & Kaur, 2020; Garg & Kaur, 2018; 
Kadian & Kumar, 2021; Kumar & Chen, 2021; Liu & Xiao, 2019; Mishra et al., 2020; 
Mishra, Singh, & Motwani, 2019; Raj, 2016; Zeng, Chen, & Kuo, 2019; Zou, Chen, & Fan, 
2020). Due to the requirement that MD and NMD's total not be more than 1, it can only 
be used to real-world, dynamic problems. Due to the possibility that certain decision-
makers may propose some assessing attribute values that exceed the restriction, many 
complicated assessment data sets cannot be represented under this criterion. For 
instance, the IFSs are not appropriate to be used for this kind of issue if the MD and the 
NMD of an assessment attribute value provided by a decision-maker are 0.8 and 0.6, 
respectively.  

The idea of Pythagorean FSs (PFSs), which Yager (Yager, 2013a, 2013b) established 
with the development of fuzzy theory, is characterised by the fact that the total of the 
squares of the MD and the NMD is less than or equal to one. As a result, PFSs are preferred 
over IFSs for the expression of ambiguous data. Numerous extensive studies have been 
conducted in light of the PFSs idea. As an illustration, Yager and Abbasov (2013) created 
a decision-making strategy using PFSs. The TOPSIS approach was expanded by Zhang 
and Xu (2014) to address decision-making problems with PFSs. To address issues with 
multi-attribute decision-making (MADM) Ma and Xu (2016), introduced the symmetric 
Pythagorean fuzzy (PF) weighted aggregation operators (AOs). New generalized 
Pythagorean fuzzy (PF) information aggregation operators (AOs) were defined by Garg 
(2016a) and used in decision-making. A decision-making procedure based on PFS 
correlation coefficients was described by Garg (2016b, 2017a). provided an approach 
based on confidence levels and PF data. A number of PF information measures were 
developed by Peng, Yuan, and Yang (2017) and used in decision-making. 

Based on PFSs and Einstein operations, Garg created generalised geometric 
interactive AOs in Garg (2018). Some PF exponential similarity metrics were created by 
Nguyen et al. (2019) and used in pattern recognition Nie et al. (2019). introduced a 
decision-making method using PFSs based on Shapley fuzzy measurements and 
partitioned normalised weighted Bonferroni mean operator. To solve MADM issues Jana, 
Senapati, and Pal (2019), employed PF Dombi operators Rani et al. (2021). Rani et al. 
introduced a VIKOR technique in (Rani et al., 2019) hat uses PFS entropy and divergence 
measurements. A novel decision-making framework was suggested by Rani et al. (2020) 
to evaluate health-care waste treatment technology. A generalised tri-parametric 
correlation coefficient for PFSs was proposed by Ejegwa (2021). New distance metrics 
for PFSs were provided by Ejegwa and Awolola (2021) and used in pattern recognition 
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issues. Rani et al. (2021) evaluated the sustainable bio energy technology for agricultural 
leftovers using weighted discrimination methods based on PFSs. An MCDM problem was 
solved by Senapati et al. (2022) under PFSs setting. 

Although the PFSs are efficient in handling experts’ complex cognitive information, 
sometimes experts face difficulty in setting MDs and NMDs because they may lie in a set 
of probable values instead of taking single values. To address this, the notion of dual-
hesitant Pythagorean fuzzy sets (DHPFS) was introduced by Wei and Lu (2017). Two sets 
of some values in the range [0, 1] that represent the possible MDs and NMDs, 
respectively, are another characteristic of a DHPFS. Thus, compared to PFSSs, DHPFSs 
depict attribute values with higher flexibility Lu et al. (2019). utilized DHPFSs in the 
performance evaluation of new rural construction. A MADM approach based on DHPFSs 
was proposed by Ji, Zhang, and Wang (2021); Tang and Wei (2019b), Tang and Wei 
presented a decision-making approach for DHPFSs. In addition, a few researchers have 
worked on the development of aggregation operators on DHPFSs Tang and Wei (2019a). 
proposed DHPFSs based Bonferroni mean operators Wei et al. (2019). developed 
weighted Hamy mean operators for DHPFSs. 

Although DHPFSs are superior to PFSs, still have a short-coming when dealing with 
experts’ evaluation information. It was assumed that objects of the DHPFSs have an equal 
weight, which may not be true in reality because different objects may have different 
significance. To address this problem Ji et al. (2021), proposed the notion of a 
probabilistic dual-hesitant Pythagorean fuzzy set (PDHPFS). The objects of PDHPFSs are 
associated with some probabilistic information. Thus, PDHPFS can depict the uncertain 
information more accurately Ji et al. (2021). proposed probabilistic dual-hesitant 
Pythagorean fuzzy (PDHPF) power weighted Hamy mean (PDHPFPWHM) operator and 
used it to solve MADM problems. Ji et al. (2021) method has the drawback that, in some 
situations, it is unable to discriminate between the priority orders of alternatives or 
cannot acquire the priority order of alternatives.” 

To overcome the drawback of the current method, an unique MADM strategy must be 
created. The followings are the significant contributions of our paper: 

1. In order to obtain a logical priority order of options, we first propose some improved 
operational laws for PDHPF elements and then develop PDHPF improved power-
weighted averaging (PDHPFIPWA) operator. The proposed PDHPFIPWA operator 
can conquer the limitation of the PDHPF power weighted Hamy mean operator. 

2. A new MADM strategy based on the PDHPFIPWA operator is suggested. The 
shortcomings of Ji et al.’s (2021) method can be solved by the suggested 
methodology Ji et al. (2021). The rest part is arranged as follows: 

We concisely discuss some essential concepts related to PDHPFs in section 2. Section 
3 investigates the short-coming of Ji et al. (2021) method based on PDHPFPWHM 
operator. We demonstrate some enhanced operations between PDHPFEs in section 4. 
Additionally, the PDHPF weighted enhanced AO are shown in this part along with their 
properties. In Section 5, we offer a mechanism for making decisions based on the created 
AO. The last section is the conclusions. 

2. Preliminaries 

We go through a few fundamental ideas that are pertinent to this article in this part. 
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Definition 2.1 (Ji et al. 2021): A PDHPFS ( )   on a universe set 1 2{ , ,..., }nU u u u  is 

represented as: 

( ) { , ( )( ), ( )( ) : }i i i iu u u u U          , where      

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )( ) { ( )} and ( )( ) { ( )}

(0 , 1, 1, 1)

i i

a a b b

i u i u

a b

a b a b

a b

u u         

        
 

denote the MD and the NMD of the element 𝑢𝑖  belonging to the PDHPFS ( )   with the 

probabilities ( )a and ( )b , respectively with ( ) 2 ( ) 20 ( ) ( ) 1
i i

a b

u u      for each a and b. 

( )   is transformed into a PDHPF element (PDHPFE) if it is contains only one element. 

The PDHPFS ( )   is expressed as ( ) ( ) ( ) ( )( ) { ( )}, { ( )}a a b b

a b

        . 

Definition 2.2: The score value ( ( ))cS   of PDHPFE

 ( ) ( ) ( ) ( )( ) { ( )}, { ( )}a a b b

a b

         is calculated by. 

( ) ( ) ( ) ( )( ( )) ( ) ( )a a b b

a b

Sc         
                                                                             

(1) 

Sometimes the ranking order between PDHPFEs cannot be distinguished if their score 
values are identical. To address this issue, their accuracy values can be used. 

Definition 2.3: The accuracy value of the PDHPFE

 ( ) ( ) ( ) ( )( ) { ( )}, { ( )}a a b b

a b

         is calculated by: 

( ) ( ) ( ) ( )( ( )) ( ) ( )a a b b

c

a b

A         
                                                                             

(2) 

Definition 2.4 (Ji et al, 2021): The ranking rules between the PDHPFEs 
(1) (2)( ) and ( )     are defined as follows: 

(a) If 
(1) (2)( ( )) ( ( ))c cS S     , then 

(1) (2)( ) ( )     
(b) If 

(1) (2)( ( )) ( ( ))c cS S     , then 
(i) If 

(1) (2)( ( )) ( ( ))c cA A     , then 
(1) (2)( ) ( )     

(ii) If 
(1) (2)( ( )) ( ( ))c cA A     , then 

(1) (2)( ) ( )     

Definition 2.5: Let ( ) ( )

( ) ( ) ( )( ) ( ), ( ) { ( )},j j

j a a

j

a

 
 

         

( ) ( ){ ( )} ( 1,2)b b

j

b

j     be two PDHPFEs. The distance between these two PDHPFEs 

is defined as follows: 

( ) 2 ( ) ( ) 2 ( )

1 1 2 2

1(1) (1)

( ) 2 ( ) ( ) 2 ( )

1 1 2 2

1

( ) ( ) ( ) ( )
1

( ( ), ( ))
( )

( ) ( ) ( ) ( )

r
a a a a

a

s
b b b b

b

D
r s





 
       

     
 
        
 




                             (3) 
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where r and s denote the number of values in ( ) ( )( ) and ( )j j 
 

  respectively. 

Definition 2.6 (Yager, 2001): Let be real values between zero and one. The power 

average (PA) operator of the real values  1 2, ,..., na a a is defined by. 

1
1 2

1

(1 ( ))

( , ,..., )

(1 ( ))

n

i i

i
n n

i

i

a a

PA a a a

a


















                                                                                             (4) 

where 
1,

( ) ( , )
n

i i j

j j i

a Supp a a
 

  and ( , )i jSupp a a  denotes the support for ia  from 

ja , which has the following three properties: 

(i) 0 ( , ) 1i jSupp a a   

(ii) ( , ) ( , )i j j iSupp a a Supp a a  

(iii) ( , ) ( , )i j k rSupp a a Supp a a  provided i j k ra a a a    where 

, , , {1,2,..., }i j k r n  

Some applications of the PA operator can be found in (Atanassov, 1986; Ejegwa & 
Awolola, 2021; Garg, 2016a; Ji et al., 2021; Kumar & Chen, 2021; Liu & Xiao, 2019; Ma & 
Xu, 2016). 

3. Analyzing the drawbacks of Ji et al.’s method (Ji et al., 2021) 

To analyze the short-comings of Ji et al.’s method (Ji et al., 2021), we first recall the Ji 
et al.’s MADM procedure (Ji et al., 2021) described below: 

Suppose there are m number of options ( 1(1) )iA i m  and n number of criteria 

( 1(1) )jC j n
 
associated with a MADM problem where each alternative is assessed by 

an expert under PDHPF setting. Assume that the initial result evaluated by the expert is 
represented as: 

M  ( ) ( ) ( ) ( ) ( )( ) { ( )}, { ( )}ij a a b b

ij ijm n
a b m n




 
           

 

( 1(1) , 1(1) )i m j n  . 

Then the Ji et al. (2021) methodology encompasses the succeeding steps: 

Step 1: Obtain the normalized the PDHPF matrix 
( ) ( )ij

m n
M


      

using the 

following equation. 

( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( )

{ ( )}, { ( )} , if  is of profit type

( )
{ ( )}, { ( )}, , if  is of non-profit type

a a b b

ij ij j

ij a b

b b a a

ij ij j

b a

C

C

      


   
     


                  (5) 



Rupak Sarkar, Vinod Bakka, Rakoti Srinivasa Rao / Oper. Res. Eng. Sci. Theor. Appl. 6(3)2023 176-202 

181 

Step 2: Compute the supports ( ) ( )( ( ), ( ))ij ikSupp     based on the following 

formula: 

( ) ( ) ( ) ( )( ( ), ( )) 1 ( ( ), ( )) ( , 1(1) ; )ij ik ij ikSupp D j k n j k                                       (6) 

Step 3:  Determine the values 
( )( ( ))ij   utilizing the following formula. 

( ) ( ) ( )

1,

( ( )) ( ( ), ( )) ( 1(1) , 1(1) )
n

ij ij ik

j j k

Supp i m j n
 

                                        (7) 

Step 4: Obtain the power weights 
( )ij using the following formula. 

( )
( )

( )

1

(1 ( ( )))
( 1(1) , 1(1) )

(1 ( ( )))

ij
jij

n
iq

q

q

w
i m j n

w







  
  

  
                                                             (8) 

where jw  denotes the weight of jC  satisfying 
1

0 and 1
n

j j

j

w j w


   . 

Step 5: Aggregate the PDHPFEs using the PDHPFPWHM operator. Suppose the 

aggregated PDHPFEs are  ( ) ( ) ( 1(1) )i i m    where 

( ) ( 1) ( 2) ( )( ) ( ( ) , ( ) ,..., ( ) ) ( 1(1) )i i i in iPDHPFPW mHM         
                         

(9) 

Step 6:  Calculate the scores (and/or accuracy values) of ( ) ( ) ( 1(1) )i i m   . 

Step 7: Generate the preference the options ( 1(1) )iA i m using the ranking rule for 

( ) ( ) ( 1(1) )i i m    and select the optimal option. 

However Ji et al.’s (2021) method has the limitation that it fails to identify the 
priorities of the alternatives in some situations. To demonstrate this, we consider the 
following three counterexamples. 

Example 3.1: Suppose three alternatives A1, A2, and A3 need to be assessed based on 
three attributes, namely C1, C2, and C3. Suppose the criteria weights are 0.35, 0.25 and 
0.40. The initial evaluation result is in Table -1in terms of PDHFEs. 

Then the steps for obtaining ranking order by Ji et al.’s (2021) method are as follows: 

Step 1: Due to the absence of non-profit type criteria, normalization is not required. 

Thus
( ) ( )

3 33 3
( ) ( )ij ijM M


            . 

Step 2: We use 
( )jkSupp  to denote the support between the PDHPFEs

( ) ( )( ) and ( ) ( , 1,2,3; )ij ik j k j k      . Then based on Eq. (6), we obtain, 

𝑆𝑢𝑝𝑝(12) = 𝑆𝑢𝑝𝑝(21) = (0.96375,0.98085,0.96148), 

𝑆𝑢𝑝𝑝(13) = 𝑆𝑢𝑝𝑝(31) = (0.97974,0.96882,0.95978), 
𝑆𝑢𝑝𝑝(23) = 𝑆𝑢𝑝𝑝(32) = (0.96663,0.95906,0.98748). 
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Step 3: The values 
( )( ( )) ( , 1,2,3)ij i j   

 
are calculated based on Eq. (7) and 

these are presented in the following matrix. 

1.9435 1.9303 1.9463

1.9496 1.9399 1.9278

1.9212 1.9489 1.9472



 
 


 
  

 

Table 1: Initial Assessment matrix for Example 3.1. 
 C1 C2 C3 

A1 

<{0.3(0.25), 0.4(0.25), 
0.5(0.25), 0.6(0.25)}, 
{0.1(0.25), 0.2(0.25), 

0.25 (0.25), 0.28 (0.25)}> 

<{0.7(0.25), 0.6(0.25), 
0.4(0.25), 0.2(0.25)}, 
{0.1(0.25), 0.2(0.25), 

0.35 (0.25), 0.41 (0.25)}> 

<{0.51(0.25), 0.27(0.25), 
0.4(0.25), 0.5 (0.25)}, 

{0 (1)}> 

A2 

<{0.1(0.25), 0.3(0.25), 
0.4(0.25), 0.5 (0.25)}, 
{0.1(0.25), 0.2(0.25), 

0.3 (0.25), 0.35 (0.25)}> 

<{0.3(0.25), 0.4(0.25), 
0.5(0.25), 0.6(0.25)}, 

{0(1)}> 

<{0.7(0.25), 0.6(0.25), 
0.4(0.25), 0.2(0.25)}, 
{0.1(0.25), 0.2(0.25), 

0.3 (0.25), 
0.4 (0.25)}> 

A3 
<{0.7(0.25), 0.6(0.25), 
0.4(0.25), 0.2(0.25)}, 

{0(1)}> 

<{0.1(0.25), 0.3(0.25), 
0.4(0.25), 

0.5 (0.25)}, 
{0.1(0.25), 0.2(0.25), 

0.25 (0.25), 
0.4 (0.25)}> 

<{0.3(0.25), 0.4(0.25), 
0.5(0.25), 0.6(0.25)}, 
{0.1(0.25), 0.2(0.25), 

0.3 (0.25), 0.37 (0.25)}> 

Step 4: The power weights 
( ) ( 1(1)3, 1(1)3)ij i j   are calculated using Eq. (8) and 

these are presented in the following matrix. 

0.3502 0.2491 0.4006

0.3513 0.2501 0.3985

0.3479 0.2508 0.4012



 
 


 
  

 

Step 5: The aggregated PDHPFEs obtained through utilizing the PDHPFPWHM 
operator are: 

(1) ( )  =<{0.5243 (0.0156), 0.4282 (0.0156), 0.4389 (0.0156), 0.4955 (0.0156)}, 

{0 (0.0625)}> , 

(2) ( )  =<{0.5057 (0.0156), 0.4741 (0.0156), 0.4283 (0.0156), 0.4524 (0.0156)}, 

{0 (0.0625)}> , 

(3) ( )  =<{0.4901 (0.0156), 0.4694 (0.0156), 0.4442 (0.0156), 0.4828 (0.0156)}, 

{0 (0.0625)}> . 

Step 6:  The scores and accuracy values of the aggregated PDHPFEs are: 
(1) (1)( ( )) ( ( ))c cS A     = 0.029, (2) (2)( ( )) ( ( ))c cS A     = 0.029, 
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(3) (3)( ( )) ( ( ))c cS A     = 0.029. 

Step 7:  The ranking order obtained by Ji et al. (2021) method is 1 2 3A A A  . Hence 

Ji et al.’s (2021) method fails to generate a proper ranking order. 

Example 3.2: Suppose three alternatives A1, A2, and A3 need to be assessed based on 
three attributes, namely C1, C2, and C3. Suppose the criteria weights are 0.25, 0.35 and 
0.40. 

Table 2: Initial Assessment Matrix for Example 3.2. 
 C1 C2 C3 

A1 

<{0.4(0.25), 0.5(0.25), 
0.3(0.25), 0.2(0.25)}, 

{0.35(0.25), 0.36(0.25), 
0.55(0.25), 0.56(0.25)}> 

<{0.5(0.25), 0.7(0.25), 
0.1(0.25), 0.4(0.25)}, 

{0.4(0.25), 0.41(0.25), 
0.5(0.25), 0.52(0.25)}> 

<{0.33(0.25), 0.3(0.25), 
0.48(0.25), 0.75 (0.25)}, {0 

(1)}> 

A2 

<{0.6(0.25), 0.3(0.25), 
0.5(0.25), 0.7(0.25)}, 

{0.5(0.25), 0.52(0.25), 
0.6(0.25), 0.61(0.25)}> 

<{0.4(0.25), 0.5(0.25), 
0.3(0.25), 0.2(0.25)}, 

{0(1)}> 

<{0.5(0.25), 0.7(0.25), 
0.1(0.25), 0.4(0.25)}, 

{0.45(0.25), 0.46(0.25), 
0.55(0.25), 0.6(0.25)}> 

A3 
<{0.5(0.25), 0.7(0.25), 

0.1(0.25), 0.4(0.25)}, {0(1)}> 

<{0.6(0.25), 0.3(0.25), 
0.5(0.25), 0.7(0.25)}, 

{0.5(0.25), 0.52(0.25), 
0.55(0.25), 0.56(0.25)}> 

<{0.38(0.25), 0.5(0.25), 
0.3(0.25), 0.2(0.25)}, 

{0.55(0.25), 0.56(0.25), 
0.6(0.25), 0.1(0.25)}> 

Then the steps for obtaining ranking order Ji et al.’s (2021) method are as follows: 

Step 1: Due to the absence of non-profit type criteria, normalization is not required. 

So 
( ) ( )

3 33 3
( ) ( )ij ijM M


            . 

Step 2: For the sake of simplicity, we use the symbol ( )jkSupp  to denote the support 

between the PDHPFEs ( ) ( )( ) and ( ) ( , 1,2,3; )ij ik j k j k      . Then using Eq. (6) we 

obtain, 

(12) (21)

(13) (31)

(23) (32)

(0.97807,0.93055,0.93073),

(0.94556,0.96075,0.95213),

(0.93711,0.94979,0.95492).

Supp Supp

Supp Supp

Supp Supp

 

 

 

 

Step 3: We compute 
( )( ( )) ( , 1,2,3)ij i j     using Eq. (7) and present them as: 

1.9236 1.9151 1.8826

1.8913 1.8803 1.9105

1.8828 1.8856 1.9071



 
 


 
  

 

Step 4: We determine the power weights 
( ) ( , 1,2,3)ij i j   using Eq. (8) and present 

them as: 

0.2516 0.3513 0.3970

0.2496 0.3482 0.4021

0.2491 0.3490 0.4018



 
 


 
  
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Step 5: The aggregated PDHPFEs obtained through utilizing the PDHPFPWHM 
operator are: 

(1) ( )  =<{0.4166 (0.0156), 0.5411 (0.0156), 0.3507 (0.0156), 0.5740 (0.0156)}, 

{0 (0.0625)}> , 
(2) ( )  =<{0.5001 (0.0156), 0.5709 (0.0156), 0.3209 (0.0156), 0.4723 (0.0156)}, 

{0 (0.0625)}> , 
(3) ( )  =<{0.5018 (0.0156), 0.5206 (0.0156), 0.3624 (0.0156), 0.5053 (0.0156)}, 

{0 (0.0625)}> . 
Step 6: The scores and accuracy values of the aggregated PDHPFEs are: 

(1) (1)( ( )) ( ( ))c cS A     = 0.029, (2) (2)( ( )) ( ( ))c cS A     = 0.029, 
(3) (3)( ( )) ( ( ))c cS A     = 0.029. 

Step 7: The ranking order obtained by Ji et al. (2021) method is 1 2 3A A A  . Hence, 

Ji et al’ (2021) method fails to generate a proper ranking order. 

Example 3.3: Suppose three alternatives A1, A2, and A3 need to be assessed based on 
three attributes, namely C1, C2, and C3. Suppose the criteria weights are 0.25, 0.35 and 
0.40. The initial assessment matrix is presented in Table 3. 

Table 3: Initial Assessment Matrix for Example 3.3. 
 C1 C2 C3 

A1 

<{0.2(0.25), 0.3(0.25), 
0.5(0.25), 0.4(0.25)}, 

{0.35(0.25), 0.36(0.25), 
0.55(0.25), 0.56(0.25)}> 

<{0.1(0.25), 0.4(0.25), 
0.5(0.25), 0.7(0.25)}, 

{0.4(0.25), 0.41(0.25), 
0.5(0.25), 0.52(0.25)}> 

<{0.25(0.25), 0.5(0.25), 
0.6(0.25), 0.2 (0.25)}, {0 

(1)}> 

A2 

<{0.3(0.25), 0.5(0.25), 
0.6(0.25), 0.2 (0.25)}, 
{0.5(0.25), 0.52(0.25), 
0.6(0.25), 0.61(0.25)}> 

<{0.2(0.25), 0.3(0.25), 
0.5(0.25), 0.4(0.25)}, 

{0(1)}> 

<{0.1(0.25), 0.4(0.25), 
0.5(0.25), 0.7(0.25)}, 

{0.45(0.25), 0.46(0.25), 
0.55(0.25), 0.6(0.25)}> 

A3 
<{0.1(0.25), 0.4(0.25), 
0.5(0.25), 0.7(0.25)}, 

{0(1)}> 

<{0.3(0.25), 0.5(0.25), 
0.6(0.25), 0.35 (0.25)}, 
{0.5(0.25), 0.52(0.25), 

0.55(0.25), 0.56(0.25)}> 

<{0.2(0.25), 0.3(0.25), 
0.5(0.25), 0.4(0.25)}, 

{0.55(0.25), 0.56(0.25), 
0.6(0.25), 0.1(0.25)}> 

Then the steps for obtaining ranking order by Ji et al.’s (2021) method are as follows: 

Step 1: Due to the absence of non-profit type criteria, normalization is not required. 

So 
( ) ( )

3 33 3
( ) ( )ij ijM M


            . 

Step 2: Here 
( )jkSupp  is used to denote the support between the PDHPFEs

( ) ( )( ) and ( ) ( , 1,2,3; )ij ik j k j k      . Then using Eq. (6) we obtain, 
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(12) (21)

(13) (31)

(23) (32)

(0.98119,0.94711,0.94425),

(0.95997,0.97169,0.95574),

(0.95153,0.95292,0.97455).

Supp Supp

Supp Supp

Supp Supp

 

 

 

 

Step 3:   We compute 
( )( ( )) ( , 1,2,3)ij i j     using Eq. (7) and present them as: 

𝜓 = [
1.9412 1.9327 1.9115
1.9188 1.9000 1.9246
1.8999 1.9188 1.9303

] 

Step 4:  We determine the power weights 
( ) ( , 1,2,3)ij i j   using Eq. (8) and 

present them as: 

𝜃 = [
0.2512 0.3507 0.3979
0.2503 0.3482 0.4013
0.2483 0.3500 0.4015

] 

Step 5: The aggregated PDHPFEs obtained through utilizing the PDHPFPWHM 
operator are: 

(1) ( )  =<{ 0.1967 (0.0156), 0.4251 (0.0156), 0.5439 (0.0156), 0.5063 (0.0156)}, 

{0 (0.0625)}> , 

(2) ( )  =<{ 0.2024 (0.0156), 0.4005 (0.0156), 0.5283 (0.0156), 0.5376 (0.0156)}, 

{0 (0.0625)}> , 

(3) ( )  =<{0.2248 (0.0156), 0.4077 (0.0156), 0.5389 (0.0156), 0.4964 (0.0156)}, 

{0 (0.0625)}> . 

Step 6:  The scores and accuracy values of the aggregated PDHPFEs are: 
(1) (1)( ( )) ( ( ))c cS A     = 0.026, (2) (2)( ( )) ( ( ))c cS A     = 0.026, 
(3) (3)( ( )) ( ( ))c cS A     = 0.026. 

Step 7:  The ranking order obtained by Ji et al. (2021) method is 1 2 3A A A  . Hence, 

Ji et al.’s (2021) method fails to generate a proper ranking order. 

The outcomes of examples 3.1, 3.2, and 3.3 show that in some situations, Ji et al.’s 
(2021) method fails to identify the proper priority order of alternatives due to the 
drawback of the PDHPWHM operator. So, there is a need for an improved MADM 
procedure to tackle such scenarios. 

4 Improved operations between PDHPFEs and associated AO 

To understand the drawbacks of the existing operations between PDHPFEs, let us 
recall the basic operations that are given below. 

Definition 4.1: Let
( ) ( ) ( ) ( ) ( )( ) { ( )}, { ( )} ( 1,2)j a a b b

j j

a b

j          be two 
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PDHPFEs. Then 

 
 

1 2

1 2

( ) 2 ( ) 2 ( ) 2 ( ) 2 ( ) ( )

1 2 1 2

(1) (2)

( ) ( ) ( ) ( )

1 2

( ) ( ) ( ) ( ) ( ) ,

(i) ( ) ( )
( )

a a a a a a

a

b b b b

b

        

    
   

 

   1 1

(1) ( ) 2 ( ) ( ) ( )

1 1(ii) ( ) 1 1 ( ) ( ) , ( )a a b b

a b




 

         
 

 

The following example shows that the operations defined by Ji et al. (2021) are not 
reasonable. 

Example 4.1: Take (1) ( ) {0.4(0.5),0.7(0.5)},{0(1)}     and 
(2) ( ) {0.5(0.3)},0.6(0.7)},{0.2(0.6),    0.5(0.4)} . Then we have, 
(1) (2)( ) ( ) {0.6082(0.15),0.68(0.35),0.7858(0.15),0.8207(0.35)},      {0(1)}

and (1) ( ) {0.1851(0.5),0.3549(0.5)},{0(1)}    . So, non-zero NMDs have no 

influence on the final results. Thus the operations defined by Ji et al. (2021) are not 
reasonable. 

Next, To show that the PDHPFWHM operator proposed by Ji et al. (2021) is not 

reasonable, the following example is given. 

Example 4.2: Let us consider the PDHPFEs (1) ( )  =<{0.2 (0.25), 0.3 (0.25), 0.5 

(0.25), 0.4 (0.25)}, {0.35 (0.25), 0.36 (0.25), 0.55 (0.25), 0.56 (0.25)}>, (2) ( )  =<{0.1 

(0.25), 0.4 (0.25), 0.5 (0.25), 0.7 (0.25)}, {0.4 (0.25), 0.41 (0.25), 0.5 (0.25), 0.52 (0.25)}>, 

and (3) ( )  =<{0.3 (0.25), 0.5 (0.25), 0.6 (0.25), 0.2 (0.25)}, {0 (1)}>. If their weights are 

respective 0.25, 0.35 and 0.40, then, we have (1) (2) (3)( ( ), ( ), ( ))PDHPFWHM       = 

<{0.2173 (0.01), 0.4116 (0.01), 0.5376 (0.01), 0.5075 (0.01)}, {0 (0.06)}> .Thus, So, non-
zero NMDs have no influence on the final results. Thus the PDFPFWHM operator defined 
by Ji et al. (2021) is not reasonable. 

Hence, our first target is to define some improved operations to overcome the above-
mentioned issues. To do so, we first introduce the concept of adjustment of PDHPFEs. Let 

us take two PDHPFEs (1) (2)( ) and ( )     Then their probabilities can be adjusted in 

the following manner. 

Example 4.3: Suppose (1) ( ) {0.4(0.8),0.3(0.2)},{0.7(0.5),0.8(0.5)}     and 
(2) ( ) {0.5(1)},{0.6(0.4),    0.8(0.6)} . Then their corresponding adjusted 

PDHPFEs are: (1) ( ) {0.4(0.4),0.4(0.1),0.4(0.3),0.3(0.2)},    

{0.7(0.4),0.7(0.1),0.8(0.3),0.8(0.2)}
 

and 
(2) ( ) {0.5(0.4),0.5(0.1),0.5(0.3),0.5(0.2)},{0.6(0.4),0.8(0.1),  

0.8(0.3),0.8(0.2)} . 

We use the symbol  to represent the set of all adjusted PDHPFEs. Now, based on the 

adjusted PDHPFEs, we propose improved operations and develop the corresponding 
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AOs. 

Definition 4.2: Let 
( ) ( ) ( ) ( ) ( )( ) { ( )}, { ( )} ( 1,2)j a a b b

j j

a b

j          be two 

adjusted PDHPFEs. Then, for any 
1 2, , 0    , the improved operations between the 

PDHPFEs are defined as: 

2 2
( ) 2 ( ) 2

1 1(1) (2) ( )

2 2
( ) 2 ( ) 2

1 1

2 2
( ) 2 ( ) 2 ( ) 2

1 1

2 2
( ) 2 ( ) 2

1 1

(1 ( ) ) (1 ( ) )

1. ( ) ( ) ( ) ,

(1 ( ) ) (1 ( ) )

2 (1 ( ) ) (1 ( ) ( ) )

(1 ( ) ) (1 ( ) )

a a

j j

j j a

a aa
j j

j j

a a b

j j j

j j

a a

j j

j j

 

 

 

 

 
     

 
      

     
 
 

  
        

 


    

 

 

 

 

( )( )b

b




 


 
 
 

( ) 2 ( ) 2
(1) ( )1 1

( ) 2 ( ) 2

1 1

( ) 2 ( ) 2 ( ) 2
( )1 1 1

( ) 2 ( ) 2

1 1

(1 ( ) ) (1 ( ) )
2. ( ) ( ) ,

(1 ( ) ) (1 ( ) )

2((1 ( ) ) (1 ( ) ( ) ) )
( )

(1 ( ) ) (1 ( ) )

a a
a

a a
a

a a b
b

a a
b

 

 

 

 


      

    
      

        
 

      

 

Theorem 4.1: Let ( ) ( ) ( ) ( ) ( )( ) { ( )}, { ( )} ( 1,2)j a a b b

j j

a b

j          be two 

adjusted PDHPFEs. Then for 1 2, , 0    , we have, 

(i) (1) (2) (2) (1)( ) ( ) ( ) ( )         

(ii) (1) (2) (1) (2)( ( ) ( )) ( ) ( )             

(iii) (1) (1) (1)

1 2 1 2( ) ( ) ( ) ( )             

Proof: Added in the Supplementary material. 

Next, based on the improved operational laws for PDHPFEs, we propose probabilistic 
dual hesitant Pythagorean fuzzy improved power weighted averaging (PDHPFIPWA) 
operator and study it’s properties. 

Definition 4.3: Let ( ) ( ) ( ) ( ) ( )( ) { ( )}, { ( )} ( 1(1) )j a a b b

j j

a b

j n         . Then 

the improved operations based weighted AO on PDHPFEs is denoted by PDHPFIPWA 
and is defined by: 

 (1) (2) ( ) ( ) ( )

1
( ( ), ( ),..., ( )) ( )

n
n j j

j
PDHPFIPWA 


           
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where 

( )

( )

( )

1

(1 ( ( )))

(1 ( ( )))

j

jj

n
j

j

j

w

w







  


  
 and jw  denotes the weight of ( ) ( )j   with 

0jw  and 1j

j

w  . 

Theorem 4.2: Let ( ) ( ) ( ) ( ) ( )( ) { ( )}, { ( )} ( 1(1) )j a a b b

j j

a b

j n         . Then 

(1) (2)( ( ), ( ),PDHPFIPWA      ( )..., ( ))n   is again a PDHPFE and 

( ) ( )

( ) ( )

( ) (

(1) (2) ( )

2 2
( ) 2 ( ) 2

1 1 ( )

2 2
( ) 2 ( ) 2

1 1

2 2
( ) 2 ( ) 2 ( ) 2

1 1

( ( ), ( ),..., ( ))

(1 ( ) ) (1 ( ) )

( ) ,

(1 ( ) ) (1 ( ) )

2 (1 ( ) ) (1 ( ) ( ) )

j j

j j

j j

n

a a

j j

j j a

a aa
j j

j j

a a b

j j j

j j

PDHPFIPWA

 

 

 

 

 

 

     

 
     

 
  

     
 
 

      

 

 

 
)

( ) ( )

( )

2 2
( ) 2 ( ) 2

1 1

( )

(1 ( ) ) (1 ( ) )
j j

b

a ab
j j

j j

 

 

  
  
  

 
     
 
 

 

 

Proof: Follows from Theorem 4.1. 

In the following, some vital properties of the PDHPFIPWA  operator are presented. 

Theorem 4.3: (Idempotency) Let 
( ) ( ) ( ) ( ) ( )( ) { ( )}, { ( )} ( 1(1) )j a a b b

j j

a b

j n         . If ( ) ( )( ) ( )j L j     (L 

being a fixed natural number), then 
(1) (2) ( ) ( )( ( ), ( ),..., ( )) ( )n LPDHPFIPWA         . 

Theorem 4.4: (Monotonicity) Let 
( ) ( ) ( ) ( ) ( )( ) { ( )}, { ( )} ( 1(1) ) andj a a b b

j j

a b

j n        

( ) ( ) ( ) ( ) ( )( ) { ( )}, { ( )} ( 1(1) )j a a b b

j j

a b

j n            such that j, 
( ) ( )a a

j j
    

and 
( ) ( )b b

j j
   . Then, (1) (2) ( )( ( ), ( ),..., ( ))nPDHPFIPWA PDHPFIPWA     

(1) (2) ( )( ( ), ( ),..., ( ))n        . 

Theorem 4.5: (Boundedness) Let 
( ) ( ) ( ) ( ) ( )( ) { ( )}, { ( )} ( 1(1) )j a a b b

j j

a b

j n         .  If 
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( ) ( ) ( ) ( ) ( )( ) {min ( )},{max ( )}j a a b b

j j
a b

        and ( ) ( ) ( )( ) {max ( )},j a a

j
a

      

( ) ( ){min ( )} ,b b

j
b
  

 
then ( ) (1) (2)( ) ( ( ), ( ),j PDHPFIPWA       

( ) ( )..., ( )) ( )n j

    . 

5 Improved decision-making methodology with PDHPFEs 

5.1 Proposed MADM approach 

Suppose there are m number of options ( 1(1) )iA i m  and n number of criteria 

( 1(1) )jC j n
 
associated with a MADM problem where each alternative is assessed by 

an expert under probabilistic dual hesitant Pythagorean fuzzy (PDHPF) setting. Assume 
that the initial result evaluated by the expert is represented by: 

M 
( ) ( ) ( ) ( ) ( )( ) { ( )}, { ( )}ij a a b b

ij ijm n
a b m n




 
           

 

( 1,2,..., ; 1,2,..., )j n i m  . 

Then the proposed methodology encompasses the succeeding steps: 

Step 1: Obtain the normalized the PDHPF matrix 
( ) ( )ij

m n
M


      using the 

following equation. 

( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( )

{ ( )}, { ( )} , if  is of profit type

( )
{ ( )}, { ( )}, , if  is of non-profit type

a a b b

ij ij j

ij a b

b b a a

ij ij j

b a

C

C

      


   
     


                (10) 

Then construct the normalized adjusted PDHPF matrix ( )ˆ ˆ( )ij

m n
M



   
 

. 

Step 2: Compute the supports 
( ) ( )ˆ ˆ( ( ), ( ))ij ikSupp     using: 

( ) ( ) ( ) ( )ˆ ˆ ˆ ˆ( ( ), ( )) 1 ( ( ), ( )) ( , 1(1) ; )ij ik ij ikSupp D j k n j k                                     (11) 

Step 3:  Determine the values 
( ) ˆ( ( ))ij   utilizing the following formula. 

( ) ( ) ( )

1,

ˆ ˆ ˆ( ( )) ( ( ), ( )) ( 1,2,..., ; 1,2,..., )
n

ij ij ik

j j k

Supp j n i m
 

                         (12) 

Step 4:  Determine 
( )ij using the following formula. 

( )
( )

( )

1

ˆ(1 ( ( )))
( 1,2,..., ; 1,2,..., )

ˆ(1 ( ( )))

ij
jij

n
iq

q

q

w
j n i m

w







  
  

  
                                              (13) 



Multi-attribute decision making based on probabilistic dual hesitant Pythagorean fuzzy 
information. 

190 

where jw  denotes the weight of jC  satisfying 
1

0 and 1
n

j j

j

w j w


   . 

Step 5: Aggregate the PDHPFEs using the PDHPFIPWA  operator. Suppose the 

aggregated PDHPFEs are  ( ) ( ) ( 1(1) )i i m    where. 

( ) ( )

( ) ( )

( )

( )

( 1) ( 2) ( )

( ) 2 ( ) 2

1 1 ( )

( ) 2 ( ) 2

1 1

( ) 2

1 1

( )

ˆ ˆ ˆ( ( ) , ( ) ,..., ( ) )

(1 ( ) ) (1 ( ) )

ˆ( ) ,

(1 ( ) ) (1 ( ) )

2 (1 ( ) ) (1

ij ij

ij ij

ij

i

i i in

n n
a a

j j

j j a

n n
a aa
j j

j j

n
a

j

j j

PDHPFIPWA

 

 



 

 

 

 

      

 
     

 
  

     
 
 

  

 

 


( )

( ) ( )

( ) 2 ( ) 2

( )

( ) 2 ( ) 2

1 1

( ) ( ) )

ˆ( ) ( 1(1) )

(1 ( ) ) (1 ( ) )

ij

ij ij

n
a b

j j

b

n n
a ab
j j

j j

i m



 

 

  
     
  

  
     
 
 



 

                
(14) 

Step 6: Calculate the scores (and/or accuracy values) of ( ) ˆ( ) ( 1(1) )i i m   . 

Step 7: Generate the preference the options ( 1(1) )iA i m using the ranking rule for 

( ) ˆ( ) ( 1(1) )i i m    and select the optimal option. 

5.2 Applications of the proposed MADM approach: 

We use it to address the instances provided in section 3 to show that the suggested 
technique may overcome the restrictions of Ji et al.’s (2021) method. 

Example 3.1: The steps for obtaining ranking order by the proposed method are as 
follows: 

Step 1: Due to absence of non-profit type criteria, normalization is not required. So 
( ) ( )

3 33 3
( ) ( )ij ijM M


            . Since the elements of ( )M M are in adjusted 

form, so ˆM M M  . 

Step 2: The supports between the PDHPFEs
( ) ( )( ) and ( ) ( , 1,2,3; )ij ik j k j k      are calculated using Eq. (11) and these are 

given by: 

(12) (21)

(13) (31)

(23) (32)

(0.96375,0.98085,0.96148),

(0.97974,0.96882,0.95978),

(0.96663,0.95906,0.98748).

Supp Supp

Supp Supp

Supp Supp

 

 

 
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Step 3: We present the values 
( )( ( )) ( , 1,2,3)ij i j    by 

𝜓 = [
1.9435 1.9303 1.9463
1.9496 1.9399 1.9278
1.9212 1.9489 1.9472

] 

Step 4: The values 
( ) ( , 1,2,3)ij i j  are presented by 

𝜃 = [
0.3502 0.2491 0.4006
0.3513 0.2501 0.3985
0.3479 0.2508 0.4012

] 

Step 5: The aggregated PDHPFEs obtained through utilizing the PDHPFIPWA  

operator are: 

(1) ( )  =<{0.5151 (0.25), 0.4216 (0.25), 0.4381 (0.25), 0.4894 (0.25)}, 

{ 0.0802 (0.25), 0.1637 (0.25), 0.2333 (0.25), 0.2608 (0.25)}> , 

(2) ( )  =<{ 0.4850 (0.25), 0.4676 (0.25), 0.4276 (0.25), 0.4442 (0.25)}, 

{ 0.0933 (0.25), 0.1782 (0.25), 0.2580 (0.25), 0.3187 (0.25)}> , 

(3) ( )  =<{ 0.4706 (0.25), 0.4637 (0.25), 0.4433 (0.25), 0.4746 (0.25)}, 

{0.0736 (0.25), 0.1544 (0.25), 0.2341 (0.25), 0.3352 (0.25)}> . 

Step 6: The scores of the aggregated PDHPFEs are: 

(1)( ( ))Sc   =0.2815, (2)( ( ))Sc   =0.2440, (3)( ( ))Sc   =0.2637. 

Step 7:  The ranking order is 1 3 2A A A . Hence, the best alternative is 1A . 

Therefore, the disadvantage of Ji et al.’s (2021) technique may be overcome by the 
proposed way. 

Example 3.2: Then the steps for obtaining ranking order by the proposed method are 
as follows: 

Step 1: Due to absence of non-profit type criteria, normalization is not required. So 
( ) ( )

3 33 3
( ) ( )ij ijM M


            . Since the elements of ( )M M .are in adjusted 

form, so ˆM M M  . 

Step 2: The supports between the PDHPFEs
( ) ( )( ) and ( ) ( , 1,2,3; )ij ik j k j k      are calculated using Eq. (11) and these are 

given by: 

(12) (21)

(13) (31)

(23) (32)

(0.97807,0.93055,0.93073),

(0.94556,0.96075,0.95213),

(0.93711,0.94979,0.95492).

Supp Supp

Supp Supp

Supp Supp

 

 

 
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Step 3:   We present the values 
( )( ( )) ( , 1,2,3)ij i j    by. 

𝜓 = [
1.9236 1.9151 1.8826
1.8913 1.8803 1.9105
1.8828 1.8856 1.9071

] 

Step 4:  The values 
( ) ( , 1,2,3)ij i j  are presented by 

𝜃 = [
0.2516 0.3513 0.3970
0.2496 0.3482 0.4021
0.2491 0.3490 0.4018

] 

Step 5: The aggregated PDHPFEs obtained through utilizing the PDHPFIPWA  

operator are: 

(1) ( )  =<{ 0.4147 (0.25), 0.5298 (0.25), 0.3446 (0.25), 0.5559 (0.25)}, 

{0.3107 (0.25), 0.3513 (0.25), 0.4032 (0.25), 0.3811 (0.25)}> , 

(2) ( )  =<{0.4977 (0.25), 0.5620 (0.25), 0.3144 (0.25), 0.4577 (0.25)}, 

{0.4081 (0.25), 0.4232 (0.25), 0.4900 (0.25), 0.5789 (0.25)}> , 

(3) ( )  =<{0.4983 (0.25), 0.5113 (0.25), 0.3566 (0.25), 0.4885 (0.25)}, 

{0.4701 (0.25), 0.4618 (0.25), 0.5267 (0.25), 0.4668 (0.25)}> . 

Step 6:  The scores of the aggregated PDHPFEs are: 

(1)( ( ))Sc   =0.0997, (2)( ( ))Sc   =-0.0171, (3)( ( ))Sc   =-0.0177. 

Step 7: The ranking order is 1 2 3A A A . Hence, the best alternative is 1A . 

Therefore, the disadvantage of Ji et al.’s (2021) technique may be overcome by the 
proposed way. 

Example 3.3: The steps for obtaining ranking order by the proposed method are as 
follows: 

Step 1: Due to absence of non-profit type criteria, normalization is not required. So 
( ) ( )

3 33 3
( ) ( )ij ijM M


            . Since the elements of ( )M M are in adjusted 

form, so ˆM M M  . 

Step 2: The supports between the PDHPFEs ( ) ( )( ) and ( ) ( , 1,2,3; )ij ik j k j k      are 

calculated using Eq. (11) and these are given by: 

(12) (21)

(13) (31)

(23) (32)

(0.98119,0.94711,0.94425),

(0.95997,0.97169,0.95574),

(0.95153,0.95292,0.97455).

Supp Supp

Supp Supp

Supp Supp

 

 

 
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Step 3:   We present the values 
( )( ( )) ( , 1,2,3)ij i j    by

 

𝜓 =

[
1.9412 1.9327 1.9115
1.9188 1.9000 1.9246
1.8999 1.9188 1.9303

] 

Step 4:  The values 
( ) ( , 1,2,3)ij i j  are presented by.

 
𝜃 = [

0.2512 0.3507 0.3979
0.2503 0.3482 0.4013
0.2483 0.3500 0.4015

] 

Step 5: The aggregated PDHPFEs obtained through utilizing the PDHPFIPWA  

operator are: 

(1) ( )  =<{0.1961 (0.25), 0.4231 (0.25), 0.5429 (0.25), 0.4896 (0.25)}, 

{0.2968 (0.25), 0.3009 (0.25), 0.4098 (0.25), 0.4915 (0.25)}> , 

(2) ( )  =<{ 0.2013 (0.25), 0.3985 (0.25), 0.5276 (0.25), 0.5236 (0.25)}, 

{0.3896 (0.25), 0.4145 (0.25), 0.4947 (0.25), 0.5771 (0.25)}> , 

(3) ( )  =<{0.2238 (0.25), 0.4052 (0.25), 0.5379 (0.25), 0.4863 (0.25)}, 

{0.4697 (0.25), 0.4823 (0.25), 0.5232 (0.25), 0.3356 (0.25)}> . 

Step 6:  The scores of the aggregated PDHPFEs are: 

(1)( ( ))Sc   =0.381, (2)( ( ))Sc   =-0.0562, (3)( ( ))Sc   =-0.0393. 

Step 7:  The ranking order is 1 3 2A A A . Hence, the best alternative is 1A . 

Therefore, the disadvantage of Ji et al.’s (2021) technique may be overcome by the 
proposed way. 

To demonstrate the similarity of outcomes derived through Ji et al.’s (2021) method 
and the proposed method, we consider two more examples furnished below. In these two 
examples we have assumed that none of the PDHPFEs has a non-membership value 
equals to “0”. 

Example 5.1: Suppose an Educational Institute wants to appoint a placement officer 

against a vacant post. Assume that three candidates ( 1,2,3)i iA  get nominated for 

further evaluation after pre-elimination. In this regard, three criteria, namely 
‘communication skill’, ‘experience’ and ‘overall knowledge’ are considered for final 
assessment. The criteria weights are respectively 0.25, 0.35, and 0.40. The initial 
assessment matrix is presented in Table 4. 

Table 4: Initial Assessment Matrix for Example 5.1. 
 C1 C2 C3 

A1 

<{0.1(0.3), 0.2(0.4), 
0.4(0.1), 0.5(0.2)}, 
{0.4(0.3), 0.5(0.4), 

0.55(0.1), 
0. 6(0.2)}> 

<{0.3(0.2), 0.5(0.4), 
0.52(0.3), 0.53(0.1)}, 
{0.4(0.2), 0.45(0.4), 
0.55(0.3), 0.6(0.1)}> 

<{0.2(0.4), 0.3(0.1), 
0.4(0.1), 0.45 (0.4)}, 
{0.6(0.4), 0.63(0.1), 
0.65(0.1), 0.7(0.4)}> 
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A2 

<{0.68(0.2), 0.7(0.3), 
0.71(0.4), 0.73 (0.1)}, 

{0.1(0.2), 0.2(0.3), 
0.4(0.4), 0.5(0.1)}> 

<{0.82(0.3), 0.8(0.4), 
0.73(0.1), 0.7(0.2)}, 
{0.4(0.3), 0.5(0.4), 

0.55(0.1), 0.6(0.2)}> 

<{0.2(0.3), 0.3(0.4), 
0.5(0.1), 0.6(0.2)}, 

{0.3(0.3), 0.35(0.4), 
0.45(0.1), 0.5(0.2)}> 

A3 

<{0.25(0.4), 0.3(0.1), 
0.33(0.1), 0.4(0.4)}, 
{0.4(0.4), 0.6(0.1), 

0.65(0.1), 0.7(0.4)}> 

<{0.3(0.3), 0.4(0.4), 
0.55(0.1), 
0.6 (0.2)}, 

{0.2(0.3), 0.3(0.4), 
0.5(0.1), 0.6(0.2)}> 

<{0.6(0.3), 0.65(0.4), 
0.7(0.1), 0.75(0.2)}, 
{0.3(0.3), 0.4(0.4), 

0.42(0.1), 0.5(0.2)}> 

Then the steps for obtaining ranking order by Ji et al. (2021) method are as follows: 

Step 1: Due to absence of non-profit type criteria, the normalization process is not 

required. Therefore, 
( ) ( )

3 33 3
( ) ( )ij ijM M


            . 

Step 2: The symbol ( )jkSupp  is used to denote the support between the PDHPFEs
( ) ( )( ) and ( ) ( , 1,2,3; )ij ik j k j k      .  Then, based on Eq.  (6), we obtain, 

(12) (21)

(13) (31)

(23) (32)

(0.96031,0.92174,0.96529),

(0.95708,0.93530,0.92934),

(0.92839,0.92899,0.96029).

Supp Supp

Supp Supp

Supp Supp

 

 

 

 

Step 3:   We present the values 
( )( ( )) ( , 1,2,3)ij i j    by

     

𝜓 =

[
1.9173 1.8887 1.8855
1.8570 1.8507 1.8643
1.8946 1.9256 1.8896

] 

Step 4:  The values 
( ) ( , 1,2,3)ij i j  are presented by

 
𝜃 = [

0.2519 0.3493 0.3987
0.2499 0.3491 0.4009
0.2492 0.3526 0.3981

] 

Step 5: The aggregated PDHPFEs obtained through utilizing the PDHPFPWHM 
operator are: 

(1) ( )  = <{0.2245 (0.024), 0.3713 (0.016), 0.4475 (0.003), 0.4925 (0.008)}, 

{0.4702 (0.024), 0.5284 (0.016), 0.5878 (0.003), 0.6380 (0.008)}>, 

(2) ( )  = <{0.6553 (0.018), 0.6560 (0.048), 0.6532 (0.004), 0.6734 (0.004)}, 

{0.2520 (0.018), 0.3446 (0.048), 0.4686 (0.004), 0.5328 (0.004)}>, 

(3) ( )  = <{0.4506 (0.036), 0.5116 (0.016), 0.5877 (0.001), 0.6414 (0.016)}, 

{0.2793 (0.036), 0.3998 (0.016), 0.4979 (0.001), 0.5798 (0.016)}>. 

Step 6:  The scores of the aggregated PDHPFEs are: 
(1)( ( ))Sc   = 0.0166, 

(2)( ( ))Sc   = 0.0485, 
(3)( ( ))Sc   = 0.0352. 
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Step 7:  The ranking order is 2 3 1A A A . Hence, by Ji et al.’s (2021) method, 2A  

comes out as the best alternative. 

Next, we apply our proposed method to Example 5.1 to investigate whether the best 
alternative remains the same or not. Steps are given below. 

Step 1: “Due to absence of non-profit type criteria, normalization is not required. So 
( ) ( )

3 33 3
( ) ( )ij ijM M


            . Since the elements of ( )M M are in not 

adjusted form, so we apply the techniques of adjustment of probabilities. The adjusted 
matrix is given below. 

Table 5: The Adjusted Matrix M̂ for Example 5.1. 
 C1 C2 C3 

A1 

<{0.1(0.2), 0.1(0.1), 0.2(0.1), 
0.2(0.1), 0.2(0.1), 0.2(0.1), 
0.4(0.1), 0.5(0.1), 0.5(0.1)}, 

<{0.4(0.2), 0.4(0.1), 0.5(0.1), 
0.5(0.1), 0.5(0.1), 0.5(0.1), 

0.55(0.1), 0.6(0.1), 0.6(0.1)}> 

<{0.3(0.2), 0.5(0.1), 0.5(0.1), 
0.5(0.1), 0.5(0.1), 0.52(0.1), 

0.52(0.1), 0.52(0.1), 0.53(0.1)}, 
<{0.4(0.2), 0.45(0.1), 0.45(0.1), 
0.45(0.1), 0.45(0.1), 0.55(0.1), 
0.55(0.1), 0.55(0.1), 0.6(0.1)}> 

<{0.2(0.2), 0.2(0.1), 0.2(0.1), 
0.3(0.1), 0.4(0.1), 0.45(0.1), 

0.45(0.1), 0.45(0.1), 0.45(0.1)}, 
<{0.6(0.2), 0.6(0.1), 0.6(0.1), 
0.63(0.1), 0.65(0.1), 0.7(0.1), 
0.7(0.1), 0.7(0.1), 0.7(0.1)}> 

A2 

<{0.68(0.2), 0.7(0.1), 0.7 (0.2), 
0.71 (0.2), 0.71 (0.1), 0.71(0.1), 

0.73 (0.1)}, 
{<{0.1(0.2), 0.2(0.1), 0.2 (0.2), 

0.4 (0.2), 0.4 (0.1), 0.4(0.1), 
0.5 (0.1)}> 

<{0.82(0.2), 0.82(0.1), 0.8 (0.2), 
0.8 (0.2), 0.73 (0.1), 0.7(0.1), 

0.7 (0.1)}, 
{<{0.4(0.2), 0.4(0.1), 0.5 (0.2), 
0.5 (0.2), 0.55 (0.1), 0.6(0.1), 

0.6 (0.1)}> 

<{0.2(0.2), 0.2(0.1), 0.3 (0.2), 
0.3 (0.2), 0.5 (0.1), 0.6(0.1), 

0.6 (0.1)}, 
{<{0.3(0.2), 0.3(0.1), 0.35 (0.2), 
0.35 (0.2), 0.45 (0.1), 0.5(0.1), 

0.5 (0.1)}> 

A3 

<{0.25(0.3), 0.25(0.1), 0.3 (0.1), 
0.33 (0.1), 0.4(0.1), 0.4(0.1), 

0.4 (0.2)}, 
{0.4(0.3), 0.4(0.1), 0.6 (0.1), 
0.65 (0.1), 0.7(0.1), 0.7(0.1), 

0.7 (0.2)}> 

<{0.3(0.3), 0.4(0.1), 0.4 (0.1), 
0.4 (0.1), 0.4(0.1), 0.55(0.1), 

0.6 (0.2)}, 
{0.2(0.3), 0.3(0.1), 0.3 (0.1), 
0.3 (0.1), 0.3(0.1), 0.5(0.1), 

0.6 (0.2)}> 

<{0.6(0.3), 0.65(0.1), 0.65 (0.1), 
0.65 (0.1), 0.65(0.1), 0.7(0.1), 

0.75 (0.2)}, 
{0.3(0.3), 0.4(0.1), 0.4 (0.1), 
0.4 (0.1), 0.4(0.1), 0.42(0.1), 

0.5(0.2)}> 

Step 2: The supports between the PDHPFEs ( ) ( )( ) and ( ) ( , 1,2,3; )ij ik j k j k     

are calculated based on Eq. (11) and these are given by:” 

(12) (21)

(13) (31)

(23) (32)

(0.99046,0.98048,0.98017),

(0.98735,0.97088,0.96362),

(0.98403,0.95942,0.97731).

Supp Supp

Supp Supp

Supp Supp

 

 

 

 

Step 3:   We present the values 
( )( ( )) ( , 1,2,3)ij i j    by

     

𝜓 =

[
1.9778 1.9745 1.9714
1.9513 1.9399 1.9303
1.9437 1.9574 1.9409

] 

Step 4:  The values 
( ) ( , 1,2,3)ij i j  are presented by.

 𝜃 = [
0.2503 0.3500 0.3996
0.2510 0.3501 0.3988
0.2496 0.3512 0.3991

] 

Step 5: The aggregated PDHPFEs obtained through utilizing the PDHPFIPWA  operator 

are: 

(1) ( )  = <{0.2237 (0.2), 0.3278 (0.1), 0.3389 (0.1), 0.3669 (0.1), 0.4031 (0.1), 0.4323 

(0.1), 0.4648 (0.1), 0.4882 (0.1), 0.4921 (0.1)},{0.4959 (0.2), 0.5085 (0.1), 0.5252 (0.1), 
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0.5419 (0.1), 0.5581 (0.1),  0.6213 (0.1), 0.6219 (0.1), 0.6287 (0.1), 0.6427 (0.1)}> , 

(2) ( )  = <{0.6346 (0.2), 0.6405 (0.1), 0.6405 (0.2), 0.6436 (0.2), 0.6490 (0.1), 0.6664 

(0.1), 0.6723 (0.1)},{<{0.3811 (0.2), 0.3878 (0.1), 0.4791 (0.2), 0.5046 (0.2), 0.5074 
(0.1), 0.5351 (0.1), 0.5534 (0.1)}>, 

(3) ( )  = <{0.4418 (0.3), 0.4969 (0.1), 0.5034 (0.1), 0.5078 (0.1), 0.5196 (0.1), 

0.5904(0.1), 0.6344 (0.2)},{0.3052 (0.3), 0.3824 (0.1), 0.4367 (0.1), 0.4565 (0.1), 
0.4844 (0.1), 0.5227 (0.1), 0.5842 (0.2)}> . 

Step 6:  The scores of the aggregated PDHPFEs are: 

(1)( ( ))Sc   =-0.1878, (2)( ( ))Sc   =0.1752, (3)( ( ))Sc   =0.0845. 

Step 7:  The ranking order is 2 3 1A A A . Hence, the best alternative is 2A . 

Hence, by our proposed method, 2A  comes out as the best alternative which is exactly 

the same obtained by using Ji et al. (2021) method. Thus, our developed method is 
effective. 

Example 5.2 (Adapted from Ji et al. (2021)): “Suppose four patients ( 1,2,3)i iA =
 

with acute respiratory distress syndrome (ARDS) are admitted in the same ICU and all of 
them show four conditions of different degree: cardio-palmonary function (C1), 
hepatorenal function (C2), complication risk (C3) and total vital signs (C4). The weighted 
vector of criteria is W=(0.32, 0.26, 0.18, 0.24)  satisfying 

4

1

1 1 ( 1,2,3,4)and 0
j

j j jw w
=

= £ =£å .  

In order to evaluate the most suitable patient, the doctor performing extra-vascular 
membrane oxygenation (ECMO) is invited to evaluate the situation of four patients from 
the four conditions respectively.” The initial assessment matrix is presented in Table 6. 

Table 6: Initial Assessment Matrix for Example 5.2 (adapted from Ji et al. (2021). 
 C1 C2 C3 C4 

A1 
<{0.7(0.3), 0.6(0.3), 
0.5(0.4)},{0.2(1)}> 

<{0.7(1)},{0.25(1)> <{0.2(1)},{0.2(1)}> 
{0.7(0.5), 0.6(0.5)}, 

{0.3(1)}> 

A2 <{0.1(1)},{0.4(1)}> <{0.3(1)},{0.7(1)}> 
<{0.3(0.5), 0.2(0.5)}, 

{0.7(1)}> 
<{0.3(1)},{0.3(1)}> 

A3 <{0.6(1)},{0.35(1)}> <{0.56(1)},{0.2(1)}> <{0.7(1)},{0.1(1)}> 
{0.2(0.6), 0.4(0.4)}, 

{0.4(1)}> 

A4 
<{0.05(0.7), 

0.2(0.3)},{0.5(1)}> 
<{0.3(0.5),0.2(0.5)}, 
{0.6(0.5),0.5(0.5)}> 

<{0.15(1)},{0.8(1)}> <{0.2(1)},{0.6(1)}> 

Then the steps for obtaining ranking order by our proposed method are as follows: 

Step 1: Since C3 is a non-profit type criterion, so normalization is required. The 
normalized matrix is given in Table 7. 

Table 7: Normalized Assessment Matrix. 



Rupak Sarkar, Vinod Bakka, Rakoti Srinivasa Rao / Oper. Res. Eng. Sci. Theor. Appl. 6(3)2023 176-202 

197 

 C1 C2 C3 C4 

A1 
<{0.7(0.3), 0.6(0.3), 
0.5(0.4)},{0.2(1)}> 

<{0.7(1)},{0.25(1)}> <{0.2(1)},{0.2(1)}> 
{0.7(0.5), 0.6(0.5)}, 

{0.3(1)}> 

A2 <{0.1(1)},{0.4(1)}> <{0.3(1)},{0.7(1)}> 
<{0.7(1)},{0.3(0.5), 

0.2(0.5)}> 
<{0.3(1)},{0.3(1)}> 

A3 <{0.6(1)},{0.35(1)}> <{0.56(1)},{0.2(1)}> <{0.1(1)},{0.7(1)}> 
{0.2(0.6), 0.4(0.4)}, 

{0.4(1)}> 

A4 
<{0.05(0.7), 

0.2(0.3)},{0.5(1)}> 
<{0.3(0.5), 0.2(0.5)}, 
{0.6(0.5),0.5(0.5)}> 

<{0.8(1)},{0.15(1)}> <{0.2(1)},{0.6(1)}> 

Since the elements of the normalized matrix are in not adjusted form, so we apply the techniques 
of adjustment of probabilities (Example 4.3). The adjusted matrix is given below. 

Step 2: The supports between the PDHPFEs ( ) ( )( ) and ( ) ( , 1,2,3; )ij ik j k j k      are 

calculated based on Eq. (11) and these are given by: 

𝑆𝑢𝑝𝑝(12) = 𝑆𝑢𝑝𝑝(21) = (0.98031,0.89750,0.96777,0.97344), 
𝑆𝑢𝑝𝑝(13) = 𝑆𝑢𝑝𝑝(31) = (0.96062,0.85625,0.82062,0.78656), 
𝑆𝑢𝑝𝑝(14) = 𝑆𝑢𝑝𝑝(41) = (0.98500,0.96250,0.92262,0.96593), 
𝑆𝑢𝑝𝑝(23) = 𝑆𝑢𝑝𝑝(32) = (0.94094,0.79375,0.81160,0.78562), 
𝑆𝑢𝑝𝑝(24) = 𝑆𝑢𝑝𝑝(42) = (0.98843,0.90000,0.91360,0.98000), 
𝑆𝑢𝑝𝑝(34) = 𝑆𝑢𝑝𝑝(43) = (0.94562,0.89375,0.89800,0.76562). 

Step 3:   We present the values 
( )( ( )) ( , 1,2,3)ij i j    by

     

𝜓 =

[

2.9259 2.9096 2.8472 2.9191
2.7162 2.5912 2.5437 2.7562
2.7110 2.6929 2.5302 2.7342
2.7259 2.7391 2.3378 2.7115

] 

Step 4: The values 
( ) ( , 1,2,3)ij i j  are presented by

 

𝜃 = [

0.3216 0.2602 0.1773 0.2408
0.3247 0.2549 0.1742 0.2461
0.3227 0.2609 0.1727 0.2436
0.3261 0.2659 0.1643 0.2436

] 

Table 8: The Adjusted Normalized Matrix. 
 C1 C2 C3 C4 

A1 

<{0.7(0.3), 0.6(0.2), 
0.6(0.1), 0.5(0.4)}, 
{0.2(0.3), 0.2(0.2), 
0.2(0.1), 0.2(0.4)}> 

<{0.7(0.3), 0.7(0.2), 
0.7(0.1), 0.7(0.4)}, 

{0.25(0.3), 0.25(0.2), 
0.25(0.1), 0.25(0.4)}> 

<{0.2(0.3), 0.2(0.2), 
0.2(0.1), 0.2(0.4)}, 

{0.2(0.3), 0.2(0.2), 0.2(0.1), 
0.2(0.4)}> 

<{0.7(0.3), 0.7(0.2), 
0.6(0.1), 0.6(0.4)}, 

{0.3(0.3), 0.3(0.2), 0.3(0.1), 
0.3(0.4)}> 

A2 
<{0.1(0.5), 0.1(0.5) }, 
{0.4(0.5), 0.4(0.5)}> 

<{0.3(0.5), 0.3(0.5)}, 
{0.7(0.5), 0.7(0.5)}> 

<{0.7(0.5), 0.7(0.5)}, 
{0.3(0.5), 0.2(0.5)}> 

<{0.3(0.5), 0.3(0.5) }, 
{0.3(0.5), 0.3(0.5)}> 

A3 
<{0.6(0.6), 0.6(0.4)}, 

{0.35(0.6), 0.35(0.4)}> 
<{0.56(0.6), 0.56(0.4)}, 

{0.2(0.6), 0.2(0.4)}> 
<{0.1(0.6), 0.1(0.4) }, 
{0.7(0.6), 0.7(0.4)}> 

<{0.2(0.6), 0.4(0.4) }, 
{0.4(0.6), 0.4(0.4)}> 

A4 

<{0.05(0.5), 0.05(0.2), 
0.2(0.3)}, 

{0.5(0.5), 0.5(0.2), 
0.5(0.3)}> 

<{0.3(0.5), 0.2(0.2), 
0.2(0.3)}, 

{0.6(0.5), 0.5(0.2), 
0.5(0.3)}> 

<{0.8(0.5), 0.8(0.2), 
0.8(0.3)}, 

{0.15(0.5), 0.15(0.2), 
0.15(0.3)}> 

<{0.2(0.5), 0.2(0.2), 
0.2(0.3)}, 

{0.6(0.5), 0.6(0.2), 
0.6(0.3)}> 

Step 5: The aggregated PDHPFEs obtained through utilizing the PDHPFIPWA  operator are: 

(1) ( )  = <{0.6483 (0.3), 0.6142 (0.2), 0.5864 (0.1), 0.5559 (0.4)},{ 0.2505 (0.3), 0.2536 

(0.2), 0.2484  (0.1), 0.2511 (0.4)}> , 
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(2) ( )  = <{0.3753 (0.5), 0.3753 (0.5)},{ 0.4810 (0.5), 0.4679 (0.5) }> , 

(3) ( )  =<{0.4631 (0.6), 0.4924 (0.4)},{ 0.4144 (0.6), 0.4119 (0.4) }> , 

(4) ( )  = <{0.3973 (0.5), 0.3805 (0.2), 0.3958 (0.3)},{ 0.5005 (0.5), 0.4704 (0.2), 0.4699 

(0.3)}> . 

Step 6:  The scores of the aggregated PDHPFEs are: 

(1)( ( ))Sc   = 0.3472, (2)( ( ))Sc   = -0.0991, (3)( ( ))Sc   = 0.0613, (4)( ( ))Sc   = -0.0918. 

Step 7:  The ranking order is 1 3 4 2A A A A . Hence, the best alternative is 1A . 

On the other hand, by Ji et al.’s (2021) method, we obtain the ranking order 

1 3 2 4A A A A
 
(for k=1) which is slightly different from what we obtained, but the 

best alternative remains the same for both methods. This means that our method is 
effective and credible. 

6 Conclusion 

“PDHPFSs can effectively portray the dubiousness and uncertainty due to the 
inclusion of the MDs and NMDs with their corresponding probabilities. The joint 
occurrence of the stochastic and the non-stochastic ambiguity makes the PDHPFSs more 
realistic and superior compared to Pythagorean fuzzy information, and hesitant 
Pythagorean fuzzy information (we refer Table 9 for characteristic comparison). The 
basic operations for PDHFPFEs proposed by Ji et al. (2021) are not reasonable in the case 
when among the PDHPFEs considered, one PDHPFE has a non-belongingness grade 
equal to ‘0’. Also the PDHPF power weighted Hamy mean operator proposed by Ji et al. 
(2021) gives unreasonable output in the case when among the PDHPFEs considered, one 
PDHPFE has a non-belongingness grade equal to ‘0’. So, firstly, to get a reasonable output, 
we have proposed the adjustments of probabilities of the PDHPFEs based on which we 
have defined improved operational laws for PDHPFEs, and improved power weighted 
averaging operator. Then we present it’s pivotal qualities like idempotency, 
boundedness, and monotonicity under PDHPF setting. Since Ji et al.’s (2021) method 
based on PDHPF power weighted Hamy mean operator for dealing with MADM issues 
sometimes generates unreasonable ranking order, so we have developed an improved 
MADM approach to generate the reasonable ranking order and to track down the best 
option in PDHPF setting. 

The limitations of our work are: (i) the proposed PDHPFIPWA  operator doesn’t 

consider the dependency among various criteria, and (ii) the proposed model is not 
suitable for multi-expert MCDM problems. In the future, the proposed operator can be 
merged with Bonferroni mean operators (Saha, Garg, & Dutta, 2021; Saha, Senapati, & 
Yager, 2021), and Maclaurin symmetric mean operators (Saha et al., 2022)  to generate 
hybrid operators to consider the dependency among different criteria. Moreover, the 
developed model can be extended to multi-expert MCDM model upon consideration of 
experts’ weights and their consensus reaching. Besides, one can extend the proposed 
approach to probabilistic dual hesitant q-rung orthopair fuzzy sets, and its linguistic 
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version namely probabilistic linguistic dual hesitant q-rung orthopair fuzzy sets. 

Table 9: The Characteristic Comparison. 

Information type 
Whether deals 
with hesitancy? 

Whether deals with 
probabilistic 
information? 

Generality 
and flexibility 

Pythagorean fuzzy information No No Medium 
Hesitant Pythagorean fuzzy 

information 
Yes No High 

Probabilistic dual hesitant 
Pythagorean fuzzy information 

Yes Yes Very high 
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