Interval Valued Pentapartitioned Neutrosophic Graphs with an Application to MCDM

Authors

  • Said Broumi Laboratory of Information Processing, Faculty of Science Ben M’Sik, University of Hassan II, Casablanca, Morocco
  • D Ajay Department of Mathematics, Sacred Heart College (Autonomous), Tamilnadu, India
  • P Chellamani Department of Mathematics, Sacred Heart College (Autonomous), Tamilnadu, India
  • Lathamaheswari Malayalan Department of Mathematics, Hindustan Institute of Technology & Science, Chennai, India
  • Mohamed Talea Laboratory of Information Processing, Faculty of Science Ben M’Sik, University of Hassan II, Casablanca, Morocco
  • Assia Bakali Ecole Royale Navale-Boulevard Sour Jdid, Morocco
  • Philippe Schweizer Independent researcher, Switzerland
  • Saeid Jafari College of Vestsjaelland South Herrestarede 11, Denmark

DOI:

https://doi.org/10.31181/oresta031022031b

Keywords:

Neutrosophic Set; Interval valued Pentapartitioned Neutrosophic sets; Neutrosophic Graph; IVPPN-Graph.

Abstract

The concept of interval valued pentapartitioned neutrosophic set is the extension of interval-valued neutrosophic set, quadripartitioned neutrosophic set, interval valued quadripartitioned neutrosophic set and pentapartitioned neutrosophic set. The powerful mathematical tool known as the interval valued pentapartitioned neutrosophic set divides indeterminacy into three separate components: unknown, contradiction, and ignorance. There are several applications for graph theory in everyday life, and it is a rapidly growing topic. The concept of an interval valued pentapartitioned neutrosophic set is used in graph theory. A decision-making method ( multicriteria, MCDM) is proposed by using the developed Interval valued Pentapartitioned Neutrosophic set with a numerical illustration. In this paper, as an extension of interval valued neutrosophic graph theory, we introduce the notions of Interval-Valued Pentapartitioned Neutrosophic Graph (IVPPN-graph) with degree, size, and order of an IVPPN-graph.

Downloads

Download data is not yet available.

References

Ajay, D., & Chellamani, P. (2020). Pythagorean neutrosophic fuzzy graphs. International Journal of Neutrosophic Science, 11(2), 108-114. DOI: 10.5281/zenodo.4172124

Ajay, D., & Chellamani, P. (2021). Pythagorean neutrosophic soft sets and their application to decision-making scenario. In International Conference on Intelligent and Fuzzy Systems (pp. 552-560). Springer, Cham. https://doi.org/10.1007/978-3- 030-85577-265

Ajay, D., Karthiga, S., & Chellamani, P. (2021a). A study on labelling of pythagorean neutrosophic fuzzy graphs. Journal of Computational Mathematica, 5(1), 105-116. https://doi.org/10.26524/cm97

Ajay, D., Chellamani, P., Rajchakit, G., Boonsatit, N., & Hammachukiattikul, P. (2022). Regularity of Pythagorean neutrosophic graphs with an illustration in MCDM. AIMS Mathematics, 7(5), 9424-9442. doi: 10.3934/math.2022523

Ajay, D., John Borg, S., & Chellamani, P. (2022a). Domination in Pythagorean Neutrosophic Graphs with an Application in Fuzzy Intelligent Decision Making. In International Conference on Intelligent and Fuzzy Systems (pp. 667-675). Springer, Cham. https://doi.org/10.1007/978-3-031-09176-6_74

Al-Hamido, R. K. (2022). A New Neutrosophic Algebraic Structures. Journal of Computational and Cognitive Engineering. https://doi.org/10.47852/bonviewJCCE2202213

Akram, M., & Siddique, S. (2017). Neutrosophic competition graphs with applications. Journal of Intelligent & Fuzzy Systems, 33(2), 921-935. DOI: 10.3233/JIFS-162207

Atanasov, K. T. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 87-96. https://doi.org/10.1016/S0165-0114(86)80034-3

Broumi, S., Talea, M., Bakali, A., & Smarandache, F. (2016). Single valued neutrosophic graphs. Journal of New theory, (10), 86-101.

Broumi, S., Bakali, A., Talea, M., & Smarandache, F. (2016a). Isolated single valued neutrosophic graphs. Neutrosophic Sets Syst 11:74–78

Broumi, S., Smarandache, F., Talea, M., & Bakali, A. (2016b). An introduction to bipolar single valued neutrosophic graph theory. In Applied Mechanics and Materials, 841, 184-191. DOI:10.4028/www.scientific.net/AMM.841.184

Broumi, S., Talea, M., Bakali, A., & Smarandache, F. (2016c). On bipolar single valued neutrosophic graphs. Journal of New Theory, (11), 84-102.

Broumi, S., Talea, M., Bakali, A., & Smarandache, F. (2016d). Interval valued neutrosophic graphs. Critical Review, XII, 2016, 5-33.

Broumi, S., Talea, M., Bakali, A., Hassan, A., & Smarandache, F. (2017). Generalized Interval valued Neutrosophic graphs of first type. In 2017 IEEE International Conference on Innovations in Intelligent SysTems and Applications (INISTA), Gdynia Maritime University, Gdynia, Poland (Vol. 306). http://doi.org/10.5281/zenodo.888864

Chatterjee, R., Majumdar, P., & Samanta, S. K. (2016). On some similarity measures and entropy on quadripartitioned single valued neutrosophic sets. Journal of Intelligent & Fuzzy Systems, 30(4), 2475-2485. DOI: 10.3233/IFS-152017

Chatterjee, R., Majumdar, P., & Samanta, S. K. (2016a). Interval-valued Possibility Quadripartitioned Single Valued Neutrosophic Soft Sets and some uncertainty based measures on them. Neutrosophic Sets Syst Neutrosophic Sets and Systems, vol. 14, , pp. 35-43. doi.org/10.5281/zenodo.570879.

Chatterjee, R., Majumdar, P., & Samanta, S. K. (2016b). On some similarity measures and entropy on quadripartitioned single valued neutrosophic sets. Journal of Intelligent & Fuzzy Systems, 30(4), 2475-2485. DOI: 10.3233/IFS-152017

Chatterjee, R., Majumdar, P., & Samanta, S. K. (2020). A multi-criteria group decision making algorithm with quadripartitioned neutrosophic weighted aggregation operators using quadripartitioned neutrosophic numbers in IPQSVNSS environment. Soft Computing, 24(12), 8857-8880. DOI: 10.1007/s00500-019-04417-1

Chellamani, P., & Ajay, D. (2021). Pythagorean neutrosophic Dombi fuzzy graphs with an application to MCDM. Neutrosophic Sets and Systems, 47, 411-431. 10.5281/zenodo.5775162

Chellamani, P., Ajay, D., Broumi, S., & Ligori, T. (2021b). An approach to decision-making via picture fuzzy soft graphs. Granular Computing, 1-22. . https://doi.org/10.1007/s41066-021-00282-2

Das, S., Das, R., & Pramanik, S. (2022). Single valued bipolar pentapartitioned neutrosophic set and its application in MADM strategy. Neutrosophic Sets and Systems, 49, 145-163. DOI: 10.5281/zenodo.6426381

Das, S., Das, R., & Pramanik, S. (2022a). Single Valued Pentapartitioned Neutrosophic Graphs. Neutrosophic Sets and Systems, Vol. 50, pp. 225-238. DOI: 10.5281/zenodo.6774779

Das, K., Samanta, S., & De, K. (2020). Generalized neutrosophic competition graphs. Neutrosophic Sets and Systems, 31, 156-171. 10.5281/zenodo.3639608

Das, S. K., & Edalatpanah, S. A. (2020). A new ranking function of triangular neutrosophic number and its application in integer programming. International Journal of Neutrosophic Science, 4(2), 82-92. DOI: 10.5281/zenodo.3767107

Das, S., Shil, B., & Pramanik, S. (2021). SVPNS-MADM strategy based on GRA in SVPNS Environment. Neutrosophic Sets and Systems, 47, 50-65. DOI: 10.5281/zenodo.5775091

Hussain, S., Hussain, J., Rosyida, I., & Broumi, S. (2022). Quadripartitioned Neutrosophic Soft Graphs. In Handbook of Research on Advances and Applications of Fuzzy Sets and Logic (pp. 771-795). IGI Global. DOI:10.4018/978-1-7998-7979-4.ch034

Hussain, S. S., Durga, N., Hossein, R., Ganesh, G., & Oscar, C. (2022a). New Concepts on Quadripartitioned Single-Valued Neutrosophic Graph with Real-Life Application. International Journal of Fuzzy Systems, 24(3), 1515-1529. https://doi.org/10.1007/s40815-021-01205-8

Kumar, R., Edalatpanah, S. A., Jha, S., & Singh, R. (2019). A novel approach to solve gaussian valued neutrosophic shortest path problems. International Journal of Engineering and Advanced Technology, 2019, 8(3), pp. 347–353. 10.5281/zenodo.3047525

Kauffman A (1973) Introduction a la Theorie des Sous-emsembles Flous, 1, Masson et Cie.

Mao, X., Guoxi, Z., Fallah, M., & Edalatpanah, S. A. (2020). A neutrosophic-based approach in data envelopment analysis with undesirable outputs. Mathematical problems in engineering, 7626102. https://doi.org/10.1155/2020/7626102

Mohamed, S. Y., & Ali, A. M. (2020). Energy of spherical fuzzy graphs. Advances in Mathematics: Scientific Journal, 9(1), 321-332. DOI:10.37418/amsj.9.1.26

Mordeson, J. N., & Chang-Shyh, P. (1994). Operations on fuzzy graphs. Information sciences, 79(3-4), 159-170. https://doi.org/10.1016/0020-0255(94)90116-3

Mallick, R., & Pramanik, S. (2020). Pentapartitioned neutrosophic set and its properties. Neutrosophic Sets and Systems, 36, 184-192. DOI: 10.5281/zenodo.4065431

Majumder, P., Das, S., Das, R., & Tripathy, B. C. (2021). Identification of the most significant risk factor of COVID-19 in economy using cosine similarity measure under SVPNS-environment. Neutrosophic Sets and Systems, Neutrosophic Sets and Systems, vol. 46, 2021, pp. 112-127. DOI: 10.5281/zenodo.5553497

Naz, S., Rashmanlou, H., & Malik, M. A. (2017). Operations on single valued neutrosophic graphs with application. Journal of Intelligent & Fuzzy Systems, 32(3), 2137-2151. DOI: 10.3233/JIFS-161944

Naz, S., Akram, M., & Smarandache, F. (2018). Certain notions of energy in single-valued neutrosophic graphs. Axioms, 7(3), 50. https://doi.org/10.3390/axioms7030050

Pramanik, S. (2022). Interval quadripartitioned neutrosophic set, Neutrosophic Sets and Systems, 50. In press.

Polymenis, A. (2021). A neutrosophic Student’st–type of statistic for AR (1) random processes. Journal of Fuzzy Extension and Applications, 2(4), 388-393. 10.22105/JFEA.2021.287294.1149

Quek, S. G., Broumi, S., Selvachandran, G., Bakali, A., Talea, M., & Smarandache, F. (2018). Some results on the graph theory for complex neutrosophic sets. Symmetry, 10(6), 190. https://doi.org/10.3390/sym10060190

Quek, S. G., Selvachandran, G., Ajay, D., Chellamani, P., Taniar, D., Fujita, H., ... & Giang, N. L. (2022). New concepts of pentapartitioned neutrosophic graphs and applications for determining safest paths and towns in response to COVID-19. Computational and Applied Mathematics, 41(4), 1-27. https://doi.org/10.1007/s40314-022-01823-4

Radha, R., & Arul Mary, A. S. (2021). Quadripartitioned neutrosophic pythagorean lie subalgebra. Journal of Fuzzy Extension and Applications, 2(3), 283-296. https://doi.org/10.22105/jfea.2021.293069.1157

Saha, P., Majumder, P., Das, S., Das, P. K., & Tripathy, B. C. (2022). Single-valued pentapartitioned neutrosophic dice similarity measure and its application in the selection of suitable metal oxide nano-additive for biodiesel blend on environmental aspect. Neutrosophic Sets and Systems, Vol. 48, 2022, pp. 154-171, DOI: 10.5281/zenodo.6041439.

Rosenfeld, A. (1975). Fuzzy graphs. In Fuzzy Sets and Their Applications to Cognitive and Decision Processes, Zadeh, L.A., Fu, K.S., Shimura, M., Eds.; Academic Press: Cambridge, MA, USA, 77–95. . https://doi.org/10.1016/B978-0-12-775260- 0.50008-6

Smarandache, F. (2013). n-Valued refined neutrosophic logic and its applications to physics. Infinite Study, 4, 143-146. DOI: 10.5281/zenodo.49149

Smarandache, F. (1999). A unifying field in logics, neutrosophy: neutrosophic probability, set and logic. American Research Press, Rehobooth.

Smarandache, F. (2022). Plithogeny, Plithogenic Set, Logic, Probability and Statistics: A Short Review. Journal of Computational and Cognitive Engineering, 47-50. https://doi.org/10.47852/bonviewJCCE2202213

Tan, R. P., & Zhang, W. D. (2021). Decision-making method based on new entropy and refined single-valued neutrosophic sets and its application in typhoon disaster assessment. Applied Intelligence, 51(1), 283-307. https://doi.org/10.1007/s10489-020-01706-3

Voskoglou, M., & Broumi, S. (2022). A hybrid method for the assessment of analogical reasoning skills. Journal of fuzzy extension and applications, 3(2), 152-157. 10.22105/JFEA.2022.342139.1220

Vellapandi, R., & Gunasekaran, S. (2020). A new decision making approach for winning strategy based on muti soft set logic. Journal of fuzzy extension and applications, 1(2), 119-129. 10.22105/JFEA.2020.249373.1013

Wang, H., Smarandache, F., Zhang, Y. Q., & Sunderraman, R. (2010). Single valued neutrosophic sets. Multispace Multistructure 4:410–413

Yager, R.R. (2013). Pythagorean fuzzy subsets. In Proceedings of the 2013 Joint IFSAWorld Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), Edmonton, AB, Canada, 57–61. . https://doi.org/10.1109/IFSANAFIPS.2013.6608375

Zhang, K., Xie, Y., Noorkhah, S. A., Imeni, M., & Das, S. K. (2022). Neutrosophic management evaluation of insurance companies by a hybrid TODIM-BSC method: a case study in private insurance companies. Management Decision. https://doi.org/10.1108/MD-01-2022-0120

Zadeh, L. A. (1965). Fuzzy sets. Inf Control 8, 38–353. https://doi.org/10.2307/2272014

Zadeh, L. A. (2020). Similarity relations and fuzzy orderings. Inf. Sci., vol. 3, 177 – 200. https://doi.org/10.1016/S0020-0255(71)80005-1

Published

2022-10-03

How to Cite

Broumi, S., Ajay, D., Chellamani, P., Malayalan, L. ., Talea, M. ., Bakali, A. ., … Jafari, S. . (2022). Interval Valued Pentapartitioned Neutrosophic Graphs with an Application to MCDM. Operational Research in Engineering Sciences: Theory and Applications, 5(3), 68–91. https://doi.org/10.31181/oresta031022031b