Non-Pharmaceutical Intervention Strategies to Respond to the COVID-19 Pandemic: Preference Ranking Method

Authors

  • Lazim Abdullah Management Science Research Group, Faculty of Ocean Engineering Technology and Informatics, University Malaysia Terengganu, Malaysia https://orcid.org/0000-0002-6646-4751
  • Harish Garg School of Mathematics, Thapar Institute of Engineering and Technology, (Deemed University), Punjab, India https://orcid.org/0000-0001-9099-8422
  • Noor Azzah Awang College of Computing, Informatics and Media Studies, University of Technology MARA, Malaysia https://orcid.org/0000-0003-3741-8673
  • Herrini Mohd Pauzi Management Science Research Group, Faculty of Ocean Engineering Technology and Informatics, UniversityMalaysia Terengganu, Malaysia
  • Hazwani Hashim Faculty of Computer and Mathematical Sciences, University of Technology MARA, Malaysia

DOI:

https://doi.org/10.31181/oresta051022076a

Keywords:

Preference function; decision making; COVID-19, public health; weight sensitivity

Abstract

One of the hot topics of discussion today is coronavirus disease 2019 (COVID-19).  The disease is easily transmitted from one person to another person. However, there are no specific drugs that can alleviate the disease thus non-pharmaceutical intervention strategies is a good option. This paper aims to apply the Preference Ranking Organization Method for Enrichment Evaluation (PROMETHEE) method to outrank the intervention strategies. A case study is presented where five experts were invited to rate ten alternatives and ten criteria using linguistic scales. Spreadsheet software and PROMETHEE-GAIA software were employed to establish outranking results and to provide evidence on the vigorousness of the outranking results. The final outranking indicates that the most and the least preferred intervention strategies are alternative A1 (lockdown/quarantine) and alternative A10 (Practice of hand hygiene) respectively. The outranking results are further analyzed with distribution analysis and weights sensitivity analysis where these analyses provide evidence on the vigorous of the outranking results. It is found that these analyses confirm the position of A1 as the most preferred intervention strategy to curtail the COVID-19 transmissions.  The findings would be beneficial for public health authorities to deal with multiple challenges to curb the spread of COVID-19.

Downloads

Download data is not yet available.

References

Adhikari, S. P., Meng, S., Wu, Y., Mao, Y., Ye, R., Wang, Q., Sun, C., Sylvia, S., Rozelle, S., Raat, H., Zhou, H. (2020). A scoping review of 2019 Novel Coronavirus during the early outbreak period: Epidemiology, causes, clinical manifestation and diagnosis, prevention and control. Infect Dis Poverty. 1–12. https://doi: 10.1186/s40249-020-00646-x

Ahlstrom, D., Wang, L. C. (2021) Temporal strategies and firms’ speedy responses to COVID‐19. Journal of Management Studies 58(2), 592-596. https://doi.org/10.1111/joms.12664

Ahorsu, D.K., Lin, C.Y., Imani, V., Saffari, M., Griffiths, M.D., Pakpour, A.H.(2020). The Fear of COVID-19 Scale: Development and Initial Validation. Int. J. Ment. Health Addict. https://doi.org/10.1007/s11469-020-00270-8

Aledort, J.E., Lurie, N., Wasserman, J., Bozzette, S.A. (2007). Non-pharmaceutical public health interventions for pandemic influenza: An evaluation of the evidence base. BMC Public Health. 7, 1–9 . https://doi.org/10.1186/1471-2458-7-208

Altuntas, F., Gok, M.S.(2021). The effect of COVID-19 pandemic on domestic tourism: A DEMATEL method analysis on quarantine decisions. Int. J. Hosp. Manag. 92, 102719. https://doi.org/10.1016/j.ijhm.2020.102719.

Arcidiacono, S. G., Corrente, S., Greco, S. (2018). GAIA-SMAA-PROMETHEE for a hierarchy of interacting criteria. European Journal of Operational Research, 270(2), 606-624. . https://doi.org/10.1016/j.ejor.2018.03.038.

Bagherikahvarin, M. (2019). A DEA-PROMETHEE approach for complete ranking of units. International Journal of Operational Research 35(2): 224.

Bari, P., & Karande, P. (2021). Application of PROMETHEE-GAIA method to priority sequencing rules in a dynamic job shop for single machine. Materials Today: Proceedings, 46, 7258-7264.

Brans J. P., Vinck. P. (1985). A preference ranking organisation method : The PROMETHEE method for MCDM. Management Science. 31(6),647–656.

Burstein, F., San Pedro, J., Churilov, L., Wassertheil, J. (2006). Intelligent multiattribute decision support model for medical triage. In: Bernadette, B-M., Giulianella, C., Ronald R.Y. (eds.). Modern information processing, pp. 269-280. Elsevier Science. doi.org/10.1016/B978-044452075-3/50023-6.

Cao, Y. Chen, Deng, Q. Xin, Dai, Xue. S. (2020).Remdesivir for severe acute respiratory syndrome coronavirus 2 causing COVID-19: An evaluation of the evidence. Travel Med. Infect. Dis. 35, 101647. https://doi.org/10.1016/j.tmaid.2020.101647

Chan, J.F.W., Yuan, S., Kok, K.H., To, K.K.W., Chu, H., Yang, J., Xing, F., Liu, J., Yip, C.C.Y., Poon, R.W.S., Tsoi, H.W., Lo, S.K.F., Chan, K.H., Poon, V.K.M., Chan, W.M., Ip, J.D., Cai, J.P., Cheng, V.C.C., Chen, H., Hui, C.K.M., Yuen, K.Y. (2020). A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet. 395, 514–523 https://doi.org/10.1016/S0140-6736(20)30154-9

Chen, N., Zhou, M., Dong, X., Qu, J., Gong, F., Han, Y., Qiu, Y., Wang, J., Liu, Y., Wei, Y., Xia, J., Yu, T., Zhang, X., Zhang, L. (2020). Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 395, 507–513. https://doi.org/10.1016/S0140-6736(20)30211-7.

Coccia, M.: Factors determining the diffusion of COVID-19 and suggested strategy to prevent future accelerated viral infectivity similar to COVID. (2020). Sci. Total Environ. 729, 138474. https://doi.org/10.1016/j.scitotenv.2020.138474

Corbellini, L. G., Fernández, F., Vitale, E., Olmos, C. M., Charbonnier, P., Barbosa, M. V. I., Riet-Correa, F. (2020). Shifting to foot-and-mouth disease-free status without vaccination: Application of the PROMETHEE method to assist in the development of a foot-and-mouth national program in Uruguay. Preventive veterinary medicine, 181, 105082.

Demirdöğen, G., Işık, Z., & Arayici, Y. (2022). Determination of Business Intelligence and Analytics-Based Healthcare Facility Management Key Performance Indicators. Applied Sciences, 12(2), 651. https://doi.org/10.3390/app12020651.

De Smet, Y., Lidouh, K. (2013). An introduction to multi-criteria decision aid: The PROMETHEE and GAIA methods. Lect. Notes Bus. Inf. Process. 138 LNBIP, 150–176 https://doi.org/10.1007/978-3-642-36318-4_7.

Genç, N., Durna, E., Kacıra, E. (2022). The preference of the most appropriate radical-based regeneration process for spent activated carbon by the PROMETHEE approach. Environ. Sci. Pollut. Res. 29, 5240–5255 https://doi.org/10.1007/s11356-021-15833-y.

Guétin‐Poirier, V., Dufour, B., & Rivière, J. (2022). A framework for multicriteria decision‐aid analyses in animal health surveillance applied to periodic screening for French bovine tuberculosis. Transboundary and Emerging Diseases, 69(3), 1281-1293. https://doi.org/10.1111/tbed.14091.

Güner, R., Hasanoğlu, İ., Aktaş, F. (2020). Covid-19 Prevention and control measures in community. Turkish J. Med. Sci. 50, 571–577. https://doi.org/10.3906/sag-2004-146.

Hermoso-Orzáez, M.J., Lozano-Miralles, J.A., Lopez-Garcia, R., Brito, P. (2019). Environmental criteria for assessing the competitiveness of public tenders with the replacement of large-scale LEDs in the outdoor lighting of cities as a key element for sustainable development: Case study applied with PROMETHEE methodology. Sustain. 11, https://doi.org/10.3390/su11215982

Hu, Y.C., Chen, C.J. (2011). A PROMETHEE-based classification method using concordance and discordance relations and its application to bankruptcy prediction. Inf. Sci. (Ny). 181, 4959–4968. https://doi.org/10.1016/j.ins.2011.06.021.

Kohlhoff, S., Crouch, B., Roblin, P., Fertel, B., Pruitt, D., Berg, D., Weedon, J., Arquilla, B. Augenbraun, M. (2012). Evaluation of Hospital Mass Screening and Infection Control Practices in a Pandemic Influenza Full-Scale Exercise. Disaster medicine and public health preparedness 6: 378–384.

Larsen, J.R., Martin, M.R., Martin, J.D., Hicks, J.B., Kuhn, P. (2021). Modeling the onset of symptoms of COVID-19: Effects of SARS-CoV-2 variant. PLoS Comput. Biol. 17, 1–28 https://doi.org/10.1371/journal.pcbi.1009629

Lopes, A.P.F., Muñoz, M.M., Alarcón-Urbistondo, P. (2018). Regional tourism competitiveness using the PROMETHEE approach. Ann. Tour. Res. 73, 1–13. https://doi.org/10.1016/j.annals.2018.07.003

Mahmud, I., Al-Mohaimeed, A. (2020). COVID-19: Utilizing local experience to suggest optimal global strategies to prevent and control the pandemic. Int. J. Health Sci. 14, 1–3.

Maqbool, A., Khan, N.Z. (2020). Analyzing barriers for implementation of public health and social measures to prevent the transmission of COVID-19 disease using DEMATEL method. Diabetes Metab. Syndr. Clin. Res. Rev. 14, 887–892 https://doi.org/10.1016/j.dsx.2020.06.024

Merler, S., Ajelli, M. (2010). The role of population heterogeneity and human mobility in the spread of pandemic influenza. Proc. R. Soc. B Biol. Sci. 277, 557–565. https://doi.org/10.1098/rspb.2009.1605

Mofijur, M., Rahman, S. A., Nguyen, L. N., Mahlia, T. M. I., Nghiem, L. D. (2022). Selection of microalgae strains for sustainable production of aviation biofuel. Bioresource Technology, 345, 126408. https://doi.org/10.1016/j.biortech.2021.126408

Mousavi, M.M., Lin, J. (2020). The application of PROMETHEE multi-criteria decision aid in financial decision making: Case of distress prediction models evaluation. Expert Syst. Appl. 159, 113438. https://doi.org/10.1016/j.eswa.2020.113438

Murat, S., Kazan, H., Coskun, S.S. (2015). An application for measuring performance quality of schools by using the PROMETHEE multi-criteria decision making method. Procedia - Soc. Behav. Sci. 195, 729–738. https://doi.org/10.1016/j.sbspro.2015.06.344

Nassereddine, M., Azar, A., Rajabzadeh, A., Afsar, A. (2019). Decision making application in collaborative emergency response: A new PROMETHEE preference function. Int. J. Disaster Risk Reduct. 38, 101221. https://doi.org/10.1016/j.ijdrr.2019.101221

Ningsih, S.R., Wulansari, R., Hartama, D., Windarto, A.P., Wanto, A. (2019). Analysis of PROMETHEE II method on selection of lecturer community service grant proposals. J. Phys. Conf. Ser. 1255. https://doi.org/10.1088/1742-6596/1255/1/012004

Phan, L. T., Nguyen, T. V., Luong, Q. C., Nguyen, T. V., Nguyen, H. T., Le, H. Q., Nguyen, T. T., Cao, T. M., Pham, Q. D. (2020). Importation and Human-to-Human Transmission of a Novel Coronavirus in Vietnam. New England Journal of Medicine, 382(9):872–874.

Rismanbaf, A. (2020). Potential Treatments for COVID-19; a Narrative Literature Review. Arch. Acad. Emerg. Med. 8, e29 https://doi.org/10.22037/aaem.v8i1.596

Roghanian, E., Alipour, M. (2014). A fuzzy model for achieving lean attributes for competitive advantages development using AHP-QFD-PROMETHEE. J. Ind. Eng. Int. 10, 68. https://doi.org/10.1007/s40092-014-0068-4

Rothan, H.A., Byrareddy, S.N. (2020). The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J. Autoimmun. 109, 102433 https://doi.org/10.1016/j.jaut.2020.102433

Rothe, C., Schunk, M., Sothmann, P., Bretzel, G., Froeschl, G., Wallrauch, C., Zimmer, T., Thiel, V., Janke, C., Guggemos, W., Seilmaier, M., Drosten, C., Vollmar, P., Zwirglmaier, K., Zange, S., Wölfel, R., Hoelscher, M. (2020). Transmission of 2019-nCoV Infection from an Asymptomatic Contact in Germany. New England Journal of Medicine, 382(10): 970–971.

Russell, E.S., Zheteyeva, Y., Gao, H., Shi, J., Rainey, J.J., Thoroughman, D., Uzicanin, A. (2016). Reactive School Closure During Increased Influenza-Like Illness (ILI) Activity in Western Kentucky, 2013: A Field Evaluation of Effect on ILI Incidence and Economic and Social Consequences for Families. Open Forum Infect. Dis. 3, https://doi.org/10.1093/ofid/ofw113.

Saboktakin, A., Sepehri, M. M., & Khasha, R. (2021). A novel approach to educate hospitalized cardiovascular disease patients about lifestyle and behavior modifications. BMC Medical Informatics and Decision Making, 21(1), 1-17.

Saeidpour, A., Rohani, P. (2022). Optimal non-pharmaceutical intervention policy for Covid-19 epidemic via neuroevolution algorithm. Evol. Med. Public Heal. 10, 59–70. https://doi.org/10.1093/emph/eoac002.

Samanlioglu, F., Kaya, B.E. (2020). Evaluation of the COVID-19 Pandemic Intervention Strategies with Hesitant F-AHP. J. Healthc. Eng. 2020, https://doi.org/10.1155/2020/8835258

Upadhyay, H. K., Juneja, S., Maggu, S., Dhingra, G., Juneja, A. (2021). Multi-criteria analysis of social isolation barriers amid COVID-19 using fuzzy AHP. World Journal of Engineering. https://doi.org/10.1108/WJE-04-2021-0195.

World Health Organization. (2021) WHO coronavirus disease (COVID-19) dashboard. Available from: https://covid19.who.int/. [7 July 2021].

Yang, Z., Li, X., Garg, H., Qi, M. (2020) Decision support algorithm for selecting an antivirus mask over COVID-19 pandemic under spherical normal fuzzy environment. International Journal of Environmental Research and Public Health, 17(10), 3407.

Zhang, Y., Geng, X., Tan, Y., Li, Q., Xu, C., Xu, J., Hao, L., Zeng, Z., Luo, X., Liu, F., Wang, H. (2020). New understanding of the damage of SARS-CoV-2 infection outside the respiratory systems, Biomedicine & pharmacotherapy, 127, 110195 (2020). https://doi.org/10.1016/j.biopha.2020.110195.

Published

2022-10-05

How to Cite

Abdullah, L., Garg, H., Awang, N. A. ., Mohd Pauzi, H., & Hashim, H. (2022). Non-Pharmaceutical Intervention Strategies to Respond to the COVID-19 Pandemic: Preference Ranking Method. Operational Research in Engineering Sciences: Theory and Applications, 5(3), 108–130. https://doi.org/10.31181/oresta051022076a