Operational Research in Engineering Sciences

Journal DOI: https://doi.org/10.31181/oresta190101s

(A Journal of Management and Engineering) ISSN 2620-1607 | ISSN 2620-1747 |

Robust Mahalanobis Distance based TOPSIS to Evaluate the Economic Development of Provinces

Özlem Yorulmaz,
Department of Econometrics, Faculty of Economics, Istanbul University, Turkey
Sultan Kuzu Yıldırım,
Department of Quantitative Methods, School of Business, Istanbul University, Turkey
Bahadır Fatih Yıldırım,
Department of Logistics, Faculty of Transportation and Logistics, Istanbul University, Turkey

Abstract

In this paper, 81 Turkish provinces with different development levels were ranked using the TOPSIS method. To evaluate the ranking with TOPSIS, we presented an improvement to Mahalanobis distances, by considering a robust MM estimator of the covariance matrix to deal with the presence of outliers in the dataset. Additionally, the homogenous subsets, which were obtained from the robust Mahalanobis distance-based TOPSIS were compared with robust cluster analysis. According to our findings, robust TOPSIS-M scores reflect the inter-class differences in economic developments of provinces spanning from the extremely low to the extremely high level of economic developments. Considering indicators of economic development, which are often used in the literature, İstanbul ranked first, Ankara second, and İzmir third according to the Robust TOPSIS-M method. Moreover, with the Robust Cluster analysis, these provinces were diagnosed as outliers and it was seen that obtained clusters were compatible with the ranking of Robust TOPSIS-M.

Keywords
Economic Development, Mahalanobis Distance, Robust Clustering, Robust TOPSIS-M, Outliers.

Browse Issue

SCImago Journal & Country Rank

CiteScore for Management Science and Operations Research

8.1
2021CiteScore
 
 
89th percentile
Powered by  Scopus

CiteScore for Engineering (miscellaneous)

8.1
2021CiteScore
 
 
93rd percentile
Powered by  Scopus

Information